cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A118673 Positive solutions x to the equation x^2 + (x+71)^2 = y^2.

Original entry on oeis.org

0, 13, 160, 213, 280, 1113, 1420, 1809, 6660, 8449, 10716, 38989, 49416, 62629, 227416, 288189, 365200, 1325649, 1679860, 2128713, 7726620, 9791113, 12407220, 45034213, 57066960, 72314749, 262478800, 332610789, 421481416, 1529838729, 1938597916, 2456573889
Offset: 0

Views

Author

Mohamed Bouhamida, May 19 2006

Keywords

Comments

Consider all Pythagorean triples (x,x+71,y) ordered by increasing y; sequence gives x values.
For the generic case x^2+(x+p)^2=y^2 with p=2*m^2-1 a prime number in A066436, m>=2 the associated value in A066049, the x values are given by the sequence defined by: a(n) = 6*a(n-3) -a(n-6) + 2*p with a(0)=0, a(1)=2m+1, a(2)=6m^2-10m+4, a(3)=3p, a(4)=6m^2+10m+4, a(5)=40m^2-58m+21.
For the generic case x^2+(x+p)^2=y^2 with p=2*m^2-1 a prime number in A066436, m>=2, Y values are given by the sequence defined by: b(n)=6*b(n-3)-b(n-6) with b(0)=p, b(1)=2m^2+2m+1, b(2)=10m^2-14m+5, b(3)=5p, b(4)=10m^2+14m+5, b(5)=58m^2-82m+29. - Mohamed Bouhamida, Sep 09 2009

Crossrefs

Cf. A076296 (p=7), A118120 (p=17), A118674 (p=31), A129836 (p=97), A129992 (p=127), A129993 (p=199), A129991 (p=241), A129999 (p=337), A130004 (p=449), A130005 (p=577), A130013 (p=647), A130014 (p=881), A130017 (p=967).

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(13+147*x+53*x^2-11*x^3-49*x^4-11*x^5)/((1-x)*(1 - 6*x^3 +x^6)))); // G. C. Greubel, May 07 2018
  • Mathematica
    Select[Range[0,100000],IntegerQ[Sqrt[#^2+(#+71)^2]]&] (* or *) LinearRecurrence[{1,0,6,-6,0,-1,1},{0,13,160,213,280,1113,1420},100] (* Vladimir Joseph Stephan Orlovsky, Feb 02 2012 *)
  • PARI
    a(n)=([0,1,0,0,0,0,0; 0,0,1,0,0,0,0; 0,0,0,1,0,0,0; 0,0,0,0,1,0,0; 0,0,0,0,0,1,0; 0,0,0,0,0,0,1; 1,-1,0,-6,6,0,1]^n*[0;13;160;213;280;1113;1420])[1,1] \\ Charles R Greathouse IV, Apr 22 2016
    
  • PARI
    x='x+O('x^30); concat([0], Vec(x*(13+147*x+53*x^2-11*x^3 -49*x^4 -11*x^5)/((1-x)*(1-6*x^3+x^6)))) \\ G. C. Greubel, May 07 2018
    

Formula

a(n) = 6*a(n-3) -a(n-6) +142 with a(0)=0, a(1)=13, a(2)=160, a(3)=213, a(4)=280, a(5)=1113.
O.g.f.: x*(13+147*x+53*x^2-11*x^3-49*x^4-11*x^5)/((1-x)*(1-6*x^3+x^6)). - R. J. Mathar, Jun 10 2008

Extensions

Edited by R. J. Mathar, Jun 10 2008

A159549 Decimal expansion of (201+20*sqrt(2))/199.

Original entry on oeis.org

1, 1, 5, 2, 1, 8, 2, 2, 6, 7, 5, 7, 5, 1, 8, 5, 4, 3, 2, 0, 4, 0, 3, 7, 0, 7, 2, 6, 0, 5, 1, 2, 2, 5, 9, 3, 7, 5, 4, 4, 6, 9, 0, 6, 4, 0, 7, 4, 1, 4, 0, 1, 8, 1, 6, 3, 9, 9, 6, 6, 6, 3, 0, 5, 3, 2, 5, 7, 0, 1, 7, 5, 6, 6, 2, 9, 3, 5, 7, 4, 9, 1, 3, 4, 1, 7, 4, 7, 4, 9, 0, 8, 8, 7, 2, 0, 0, 1, 5, 8, 0, 6, 3, 8, 2
Offset: 1

Views

Author

Klaus Brockhaus, Apr 14 2009

Keywords

Comments

lim_{n -> infinity} b(n)/b(n-1) = (201+20*sqrt(2))/199 for n mod 3 = {1, 2}, b = A129993.
lim_{n -> infinity} b(n)/b(n-1) = (201+20*sqrt(2))/199 for n mod 3 = {0, 2}, b = A159548.

Examples

			(201+20*sqrt(2))/199 = 1.15218226757518543204...
		

Crossrefs

Cf. A129993, A159548, A002193 (decimal expansion of sqrt(2)), A159550 (decimal expansion of (91443+58282*sqrt(2))/199^2).

Programs

  • Magma
    (201 + 20*Sqrt(2))/199 // G. C. Greubel, Mar 30 2018
  • Maple
    with(MmaTranslator[Mma]): Digits:=100:
    RealDigits(evalf((201+20*sqrt(2))/199))[1]; # Muniru A Asiru, Mar 31 2018
  • Mathematica
    RealDigits[(201+20*Sqrt[2])/199, 10, 100][[1]] (* G. C. Greubel, Mar 30 2018 *)
  • PARI
    (201+20*sqrt(2))/199 \\ G. C. Greubel, Mar 30 2018
    

Formula

(201+20*sqrt(2))/199 = (20+sqrt(2))/(20-sqrt(2)).

A159550 Decimal expansion of (91443+58282*sqrt(2))/199^2.

Original entry on oeis.org

4, 3, 9, 0, 4, 4, 9, 6, 0, 5, 8, 7, 4, 3, 1, 4, 4, 2, 7, 2, 6, 8, 5, 0, 3, 8, 8, 1, 8, 3, 1, 0, 0, 4, 8, 5, 8, 8, 4, 6, 9, 3, 8, 6, 1, 8, 7, 3, 9, 9, 1, 2, 8, 2, 0, 4, 0, 5, 6, 2, 7, 3, 4, 5, 0, 0, 5, 8, 2, 9, 9, 1, 1, 1, 0, 6, 5, 0, 0, 4, 0, 2, 4, 7, 1, 6, 1, 1, 4, 8, 1, 4, 1, 9, 2, 4, 7, 1, 4, 3, 8, 1, 3, 0, 8
Offset: 1

Views

Author

Klaus Brockhaus, Apr 14 2009

Keywords

Comments

lim_{n -> infinity} b(n)/b(n-1) = (91443+58282*sqrt(2))/199^2 for n mod 3 = 0, b = A129993.
lim_{n -> infinity} b(n)/b(n-1) = (91443+58282*sqrt(2))/199^2 for n mod 3 = 1, b = A159548.

Examples

			(91443+58282*sqrt(2))/199^2 = 4.39044960587431442726...
		

Crossrefs

Cf. A129993, A159548, A002193 (decimal expansion of sqrt(2)), A159549 (decimal expansion of (201+20*sqrt(2))/199).

Programs

  • Magma
    (91443 + 58282*Sqrt(2))/199^2; // G. C. Greubel, Mar 30 2018
  • Maple
    with(MmaTranslator[Mma]): Digits:=100:
    RealDigits(evalf((91443+58282*sqrt(2))/199^2))[1]; # Muniru A Asiru, Mar 31 2018
  • Mathematica
    RealDigits[(91443+58282Sqrt[2])/199^2,10,120][[1]] (* Harvey P. Dale, Sep 23 2012 *)
  • PARI
    (91443 + 58282*sqrt(2))/199^2 \\ G. C. Greubel, Mar 30 2018
    

Formula

(91443+58282*sqrt(2))/199^2 = (362+161*sqrt(2))/(362-161*sqrt(2))
= (3+2*sqrt(2))*(20-sqrt(2))^2/(20+sqrt(2))^2.

A159548 Positive numbers y such that y^2 is of the form x^2+(x+199)^2 with integer x.

Original entry on oeis.org

181, 199, 221, 865, 995, 1145, 5009, 5771, 6649, 29189, 33631, 38749, 170125, 196015, 225845, 991561, 1142459, 1316321, 5779241, 6658739, 7672081, 33683885, 38809975, 44716165, 196324069, 226201111, 260624909, 1144260529, 1318396691
Offset: 1

Views

Author

Klaus Brockhaus, Apr 14 2009

Keywords

Comments

(-19,a(1)) and (A129993(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+199)^2 = y^2.

Examples

			(-19, a(1)) = (-19, 181) is a solution: (-19)^2+(-19+199)^2 = 361+32400 = 32761 = 181^2.
(A129993(1), a(2)) = (0, 199) is a solution: 0^2+(0+199)^2 = 39601 = 199^2.
(A129993(3), a(4)) = (504, 865) is a solution: 504^2+(504+199)^2 = 254016+494209 = 748225 = 865^2.
		

Crossrefs

Cf. A129993, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A159549 (decimal expansion of (201+20*sqrt(2))/199), A159550 (decimal expansion of (91443+58282*sqrt(2))/199^2).

Programs

  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1},{181,199,221,865,995,1145},30] (* Harvey P. Dale, Aug 09 2025 *)
  • PARI
    {forstep(n=-20, 50000000, [1, 3], if(issquare(2*n^2+398*n+39601, &k), print1(k, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=181, a(2)=199, a(3)=221, a(4)=865, a(5)=995, a(6)=1145.
G.f.: x*(1-x)*(181+380*x+601*x^2+380*x^3+181*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 199*A001653(k) for k >= 1.
Limit_{n -> oo} a(n)/a(n-3) = 3+2*sqrt(2).
Limit_{n -> oo} a(n)/a(n-1) = (201+20*sqrt(2))/199 for n mod 3 = {0, 2}.
Limit_{n -> oo} a(n)/a(n-1) = (91443+58282*sqrt(2))/199^2 for n mod 3 = 1.

A159565 Positive numbers y such that y^2 is of the form x^2+(x+241)^2 with integer x.

Original entry on oeis.org

221, 241, 265, 1061, 1205, 1369, 6145, 6989, 7949, 35809, 40729, 46325, 208709, 237385, 270001, 1216445, 1383581, 1573681, 7089961, 8064101, 9172085, 41323321, 47001025, 53458829, 240849965, 273942049, 311580889, 1403776469, 1596651269
Offset: 1

Views

Author

Klaus Brockhaus, Apr 16 2009

Keywords

Comments

(-21,a(1)) and (A129991(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+241)^2 = y^2.

Examples

			(-21, a(1)) = (-21, 221) is a solution: (-21)^2+(-21+241)^2 = 441+48400 = 48841 = 221^2.
(A129993(1), a(2)) = (0, 241) is a solution: 0^2+(0+241)^2 = 58081= 241^2.
(A129993(3), a(4)) = (620, 1061) is a solution: 620^2+(620+241)^2 = 384400+741321 = 1125721 = 1061^2.
		

Crossrefs

Cf. A129991, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A159566 (decimal expansion of (243+22*sqrt(2))/241), A159567 (decimal expansion of (137283+87958*sqrt(2))/241^2).

Programs

  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1},{221,241,265,1061,1205,1369},30] (* Harvey P. Dale, Nov 21 2011 *)
  • PARI
    {forstep(n=-24, 50000000, [3, 1], if(issquare(2*n^2+482*n+58081, &k), print1(k, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=221, a(2)=241, a(3)=265, a(4)=1061, a(5)=1205, a(6)=1369.
G.f.: x*(1-x)*(221+462*x+727*x^2+462*x^3+221*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 241*A001653(k) for k >= 1.
Limit_{n -> oo} a(n)/a(n-3) = 3+2*sqrt(2).
Limit_{n -> oo} a(n)/a(n-1) = (243+22*sqrt(2))/241 for n mod 3 = {0, 2}.
Limit_{n -> oo} a(n)/a(n-1) = (137283+87958*sqrt(2))/241^2 for n mod 3 = 1.

A159574 Positive numbers y such that y^2 is of the form x^2+(x+337)^2 with integer x.

Original entry on oeis.org

313, 337, 365, 1513, 1685, 1877, 8765, 9773, 10897, 51077, 56953, 63505, 297697, 331945, 370133, 1735105, 1934717, 2157293, 10112933, 11276357, 12573625, 58942493, 65723425, 73284457, 343542025, 383064193, 427133117, 2002309657
Offset: 1

Views

Author

Klaus Brockhaus, Apr 16 2009

Keywords

Comments

(-25,a(1)) and (A129999(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+337)^2 = y^2.

Examples

			(-25, a(1)) = (-25, 313) is a solution: (-25)^2+(-25+337)^2 = 625+97344 = 97969 = 313^2.
(A129993(1), a(2)) = (0, 337) is a solution: 0^2+(0+337)^2 = 113569 = 337^2.
(A129993(3), a(4)) = (888, 1513) is a solution: 888^2+(888+337)^2 = 788544+1500625 = 2289169 = 1513^2.
		

Crossrefs

Cf. A129999, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A159575 (decimal expansion of (339+26*sqrt(2))/337), A159576(decimal expansion of (278307+179662*sqrt(2))/337^2).

Programs

  • PARI
    {forstep(n=-28, 50000000, [3, 1], if(issquare(2*n^2+674*n+113569, &k), print1(k, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)for n > 6; a(1)=313, a(2)=337, a(3)=365, a(4)=1513, a(5)=1685, a(6)=1877.
G.f.: x*(1-x)*(313+650*x+1015*x^2+650*x^3+313*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 337*A001653(k) for k >= 1.
Limit_{n -> oo} a(n)/a(n-3) = 3+2*sqrt(2).
Limit_{n -> oo} a(n)/a(n-1) = (339+26*sqrt(2))/337 for n mod 3 = {0, 2}.
Limit_{n -> oo} a(n)/a(n-1) = (278307+179662*sqrt(2))/337^2 for n mod 3 = 1.

A201916 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+2737)^2 = y^2.

Original entry on oeis.org

0, 75, 203, 323, 552, 708, 1020, 1127, 1311, 1428, 1608, 1820, 1955, 2336, 2675, 3128, 3311, 3627, 3927, 4140, 4508, 4743, 5535, 6003, 6800, 7280, 7848, 8211, 8588, 9240, 9860, 11063, 11895, 13583, 14168, 15180, 15827, 16827, 18011, 18768, 20915, 22836
Offset: 1

Views

Author

T. D. Noe, Feb 09 2012

Keywords

Comments

Note that 2737 = 7 * 17 * 23, the product of the first three distinct primes in A058529 (and A001132) and hence the smallest such number. This sequence satisfies a linear difference equation of order 55 whose 55 initial terms can be found by running the Mathematica program.
There are many sequences like this one. What determines the order of the linear difference equation? All primes p have order 7. For those p, it appears that p^2 has order 11, p^3 order 15, and p^i order 3+4*i. It appears that for semiprimes p*q (with p > q), the order is 19. What is the next term of the sequence beginning 3, 7, 19, 55, 163? This could be sequence A052919, which is 1 + 2*3^f, where f is the number of primes.
The crossref list is thought to be complete up to Feb 14 2012.

Crossrefs

Cf. A001652 (1), A076296 (7), A118120 (17), A118337 (23), A118674 (31).
Cf. A129288 (41), A118675 (47), A118554 (49), A118673 (71), A129289 (73).
Cf. A118676 (79), A129298 (89), A129836 (97), A157119 (103), A161478 (113).
Cf. A129837 (119), A129992 (127), A129544 (137), A161482 (151).
Cf. A206426 (161), A130608 (167), A161486 (191), A185394 (193).
Cf. A129993 (199), A198294 (217), A130609 (223), A129625 (233).
Cf. A204765 (239), A129991 (241), A207058 (263), A129626 (281).
Cf. A205644 (287), A207059 (289), A129640 (313), A205672 (329).
Cf. A129999 (337), A118611 (343), A130610 (359), A207060 (401).
Cf. A129641 (409), A207061 (433), A130645 (439), A130004 (449).
Cf. A129642 (457), A129725 (521), A101152 (569), A130005 (577).
Cf. A207075 (479), A207076 (487), A207077 (497), A207078 (511).
Cf. A111258 (601), A115135 (617), A130013 (647), A130646 (727).
Cf. A122694 (761), A123654 (809), A129010 (833), A130647 (839).
Cf. A129857 (857), A130014 (881), A129974 (937), A129975 (953).
Cf. A130017 (967), A118630 (2401), A118576 (16807).

Programs

  • Mathematica
    d = 2737; terms = 100; t = Select[Range[0, 55000], IntegerQ[Sqrt[#^2 + (#+d)^2]] &]; Do[AppendTo[t, t[[-1]] + 6*t[[-27]] - 6*t[[-28]] - t[[-54]] + t[[-55]]], {terms-55}]; t

Formula

a(n) = a(n-1) + 6*a(n-27) - 6*a(n-28) - a(n-54) + a(n-55), where the 55 initial terms can be computed using the Mathematica program.
G.f.: x^2*(73*x^53 +116*x^52 +100*x^51 +171*x^50 +104*x^49 +184*x^48 +57*x^47 +92*x^46 +55*x^45 +80*x^44 +88*x^43 +53*x^42 +139*x^41 +113*x^40 +139*x^39 +53*x^38 +88*x^37 +80*x^36 +55*x^35 +92*x^34 +57*x^33 +184*x^32 +104*x^31 +171*x^30 +100*x^29 +116*x^28 +73*x^27 -363*x^26 -568*x^25 -480*x^24 -797*x^23 -468*x^22 -792*x^21 -235*x^20 -368*x^19 -213*x^18 -300*x^17 -316*x^16 -183*x^15 -453*x^14 -339*x^13 -381*x^12 -135*x^11 -212*x^10 -180*x^9 -117*x^8 -184*x^7 -107*x^6 -312*x^5 -156*x^4 -229*x^3 -120*x^2 -128*x -75) / ((x -1)*(x^54 -6*x^27 +1)). - Colin Barker, May 18 2015
Showing 1-7 of 7 results.