cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A129993 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2 + (x+199)^2 = y^2.

Original entry on oeis.org

0, 21, 504, 597, 704, 3441, 3980, 4601, 20540, 23681, 27300, 120197, 138504, 159597, 701040, 807741, 930680, 4086441, 4708340, 5424881, 23818004, 27442697, 31619004, 138821981, 159948240, 184289541, 809114280, 932247141, 1074118640
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 14 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+199, y).
Corresponding values y of solutions (x, y) are in A159548.
For the generic case x^2+(x+p)^2 = y^2 with p = 2*m^2-1 a (prime) number in A066436 see A118673 or A129836.
Lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
Lim_{n -> infinity} a(n)/a(n-1) = (201+20*sqrt(2))/199 for n mod 3 = {1, 2}.
Lim_{n -> infinity} a(n)/a(n-1) = (91443+58282*sqrt(2))/199^2 for n mod 3 = 0.

Crossrefs

Cf. A159548, A066436, A118673, A118674, A129836, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159549 (decimal expansion of (201+20*sqrt(2))/199), A159550 (decimal expansion of (91443+58282*sqrt(2))/199^2).

Programs

  • Magma
    I:=[0,21,504,597,704,3441,3980]; [n le 7 select I[n] else Self(n-1) + 6*Self(n-3) - 6*Self(n-4) - Self(n-6) + Self(n-7): n in [1..50]]; // G. C. Greubel, Mar 31 2018
  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1},{0,21,504,597,704,3441,3980},30] (* Harvey P. Dale, Jun 03 2012 *)
  • PARI
    {forstep(n=0, 500000000, [1, 3], if(issquare(2*n^2+398*n+39601), print1(n, ",")))};
    

Formula

a(n) = 6*a(n-3) - a(n-6) + 398 for n > 6; a(1)=0, a(2)=21, a(3)=504, a(4)=597, a(5)=704, a(6)=3441.
G.f.: x*(21+483*x+93*x^2-19*x^3-161*x^4-19*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 199*A001652(k) for k >= 0.
a(1)=0, a(2)=21, a(3)=504, a(4)=597, a(5)=704, a(6)=3441, a(7)=3980, a(n)=a(n-1)+6*a(n-3)-6*a(n-4)-a(n-6)+a(n-7). - Harvey P. Dale, Jun 03 2012

Extensions

Edited and two terms added by Klaus Brockhaus, Apr 14 2009

A159549 Decimal expansion of (201+20*sqrt(2))/199.

Original entry on oeis.org

1, 1, 5, 2, 1, 8, 2, 2, 6, 7, 5, 7, 5, 1, 8, 5, 4, 3, 2, 0, 4, 0, 3, 7, 0, 7, 2, 6, 0, 5, 1, 2, 2, 5, 9, 3, 7, 5, 4, 4, 6, 9, 0, 6, 4, 0, 7, 4, 1, 4, 0, 1, 8, 1, 6, 3, 9, 9, 6, 6, 6, 3, 0, 5, 3, 2, 5, 7, 0, 1, 7, 5, 6, 6, 2, 9, 3, 5, 7, 4, 9, 1, 3, 4, 1, 7, 4, 7, 4, 9, 0, 8, 8, 7, 2, 0, 0, 1, 5, 8, 0, 6, 3, 8, 2
Offset: 1

Views

Author

Klaus Brockhaus, Apr 14 2009

Keywords

Comments

lim_{n -> infinity} b(n)/b(n-1) = (201+20*sqrt(2))/199 for n mod 3 = {1, 2}, b = A129993.
lim_{n -> infinity} b(n)/b(n-1) = (201+20*sqrt(2))/199 for n mod 3 = {0, 2}, b = A159548.

Examples

			(201+20*sqrt(2))/199 = 1.15218226757518543204...
		

Crossrefs

Cf. A129993, A159548, A002193 (decimal expansion of sqrt(2)), A159550 (decimal expansion of (91443+58282*sqrt(2))/199^2).

Programs

  • Magma
    (201 + 20*Sqrt(2))/199 // G. C. Greubel, Mar 30 2018
  • Maple
    with(MmaTranslator[Mma]): Digits:=100:
    RealDigits(evalf((201+20*sqrt(2))/199))[1]; # Muniru A Asiru, Mar 31 2018
  • Mathematica
    RealDigits[(201+20*Sqrt[2])/199, 10, 100][[1]] (* G. C. Greubel, Mar 30 2018 *)
  • PARI
    (201+20*sqrt(2))/199 \\ G. C. Greubel, Mar 30 2018
    

Formula

(201+20*sqrt(2))/199 = (20+sqrt(2))/(20-sqrt(2)).

A159548 Positive numbers y such that y^2 is of the form x^2+(x+199)^2 with integer x.

Original entry on oeis.org

181, 199, 221, 865, 995, 1145, 5009, 5771, 6649, 29189, 33631, 38749, 170125, 196015, 225845, 991561, 1142459, 1316321, 5779241, 6658739, 7672081, 33683885, 38809975, 44716165, 196324069, 226201111, 260624909, 1144260529, 1318396691
Offset: 1

Views

Author

Klaus Brockhaus, Apr 14 2009

Keywords

Comments

(-19,a(1)) and (A129993(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+199)^2 = y^2.

Examples

			(-19, a(1)) = (-19, 181) is a solution: (-19)^2+(-19+199)^2 = 361+32400 = 32761 = 181^2.
(A129993(1), a(2)) = (0, 199) is a solution: 0^2+(0+199)^2 = 39601 = 199^2.
(A129993(3), a(4)) = (504, 865) is a solution: 504^2+(504+199)^2 = 254016+494209 = 748225 = 865^2.
		

Crossrefs

Cf. A129993, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A159549 (decimal expansion of (201+20*sqrt(2))/199), A159550 (decimal expansion of (91443+58282*sqrt(2))/199^2).

Programs

  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1},{181,199,221,865,995,1145},30] (* Harvey P. Dale, Aug 09 2025 *)
  • PARI
    {forstep(n=-20, 50000000, [1, 3], if(issquare(2*n^2+398*n+39601, &k), print1(k, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=181, a(2)=199, a(3)=221, a(4)=865, a(5)=995, a(6)=1145.
G.f.: x*(1-x)*(181+380*x+601*x^2+380*x^3+181*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 199*A001653(k) for k >= 1.
Limit_{n -> oo} a(n)/a(n-3) = 3+2*sqrt(2).
Limit_{n -> oo} a(n)/a(n-1) = (201+20*sqrt(2))/199 for n mod 3 = {0, 2}.
Limit_{n -> oo} a(n)/a(n-1) = (91443+58282*sqrt(2))/199^2 for n mod 3 = 1.
Showing 1-3 of 3 results.