cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A031396 Numbers k such that Pell equation x^2 - k*y^2 = -1 is soluble.

Original entry on oeis.org

1, 2, 5, 10, 13, 17, 26, 29, 37, 41, 50, 53, 58, 61, 65, 73, 74, 82, 85, 89, 97, 101, 106, 109, 113, 122, 125, 130, 137, 145, 149, 157, 170, 173, 181, 185, 193, 197, 202, 218, 226, 229, 233, 241, 250, 257, 265, 269, 274, 277, 281, 290, 293, 298
Offset: 1

Views

Author

Keywords

Comments

Terms are divisible neither by 4 nor by a prime of the form 4*k + 3 (although these conditions are not sufficient - compare A031398). - Lekraj Beedassy, Aug 17 2005
This is the set of integer solutions of all quadratic forms m^2*x^2 -/+ b*x + c with discriminant b^2 - 4*m^2*c = -4 where m is any term of A004613. - Klaus Purath, Jun 18 2025

References

  • Harvey Cohn, "Advanced Number Theory".

Crossrefs

Equals {1} U A003814.
Cf. A031398, A002313, A133204, A130226 (values of x).
See also A322781, A323271, A323272.

Programs

A094048 Let p(n) be the n-th prime congruent to 1 mod 4. Then a(n) = the least m for which m^2+1=p(n)*k^2 has a solution.

Original entry on oeis.org

2, 18, 4, 70, 6, 32, 182, 29718, 1068, 500, 5604, 10, 8890182, 776, 1744, 113582, 4832118, 1118, 1111225770, 1764132, 14, 1710, 23156, 71011068, 16, 82, 8920484118, 1063532, 2482, 126862368, 352618
Offset: 1

Views

Author

Matthijs Coster, Apr 29 2004

Keywords

Comments

Subsequence of A191860. [Reinhard Zumkeller, Jun 18 2011]

Crossrefs

Cf. A002144, A094049 (associated k), A130226, A137351, A179073.

Programs

  • Haskell
    a094048 n = head [m | m <- map (a037213 . subtract 1 . (* a002144 n))
                                   (tail a000290_list), m > 0]
    -- Reinhard Zumkeller, Jun 13 2015
  • Mathematica
    f[n_] := Block[{y = 1}, While[ !IntegerQ[ Sqrt[n*y^2 - 1]], y++ ]; Sqrt[n*y^2 - 1]]; lst = {}; Do[p = Prime@ n; If[ Mod[p, 4] == 1, AppendTo[lst, f@p]; Print[{n, Prime@n, f@p}]], {n, 66}]; lst

Extensions

Edited by Don Reble, Apr 30 2004

A130227 Smallest integer y satisfying the Pell equation x^2-ny^2=-1 for the values of n given in A031396.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 13, 1, 5, 1, 25, 13, 3805, 1, 125, 5, 1, 41, 53, 569, 1, 389, 851525, 73, 1, 61, 5, 149, 1, 9305, 385645, 1, 85, 82596761, 5, 126985, 1, 221, 17, 1, 113, 1517, 4574225, 281
Offset: 1

Views

Author

Colin Barker, Aug 05 2007

Keywords

Crossrefs

A249021 Value x in the solution of x^2-D*y^2=-1 as D runs through A003654.

Original entry on oeis.org

7, 38, 117, 18, 268, 515, 70, 882, 32, 182, 99, 29718, 2072, 1068, 43, 2943, 378, 500, 5604, 4030, 4005, 8890182, 776, 5357, 57, 1744, 6948, 113582, 4832118, 8827, 1118, 1111225770, 68, 1764132, 11018, 3141, 251, 13545, 1710, 23156, 71011068, 16432, 6072, 82, 1407, 8920484118, 1063532, 19703
Offset: 1

Views

Author

R. J. Mathar, Oct 19 2014

Keywords

Comments

The pair (x,y) is taken from the numerator of the earliest (lowest order) convergent to the continued fraction of sqrt(D) that satisfies the "non-Pell" equation.

Crossrefs

Cf. A130226.

Programs

  • Maple
    A249021 := proc(n)
        local dis,cf,o,q,x,y ;
        dis := A003654(n) ;
        cf := numtheory[cfrac](sqrt(dis),'periodic','quotients') ;
        for o from 1 do
            q := numtheory[nthconver](cf,o) ;
            x := numer(q) ;
            y := denom(q) ;
            if x^2-dis*y^2 = -1 then
                return x ;
            end if;
        end do:
    end proc:
    seq(A249021(n),n=1..50) ;
Showing 1-4 of 4 results.