cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A130510 ABC conjecture: values of c in the list of "abc-hits".

Original entry on oeis.org

9, 32, 49, 64, 81, 81, 125, 128, 225, 243, 245, 250, 256, 256, 289, 343, 375, 512, 512, 513, 539, 625, 625, 625, 676, 729, 729, 729, 729, 961, 968, 1025, 1029, 1216, 1331, 1331, 1331, 1369, 1587, 1681, 2048, 2048, 2048, 2057, 2187, 2187, 2187, 2197, 2197
Offset: 1

Views

Author

T. D. Noe, Jun 01 2007

Keywords

Comments

Let rad(x) be the function that computes the squarefree kernel of x (see A007947). A triple {a,b,c} of positive integers with a+b=c, gcd(a,b)=1 and c > rad(a*b*c) is called an abc-hit. The corresponding values of a and rad(a*b*c) are in the sequences A130511 and A130512.

Examples

			81 appears twice because 1+80=81 and 32+49=81 are two abc-hits.
		

References

Crossrefs

Cf. A120498 (unique values of c).
Cf. A130511, A130512 (a, and rad(a*b*c)).
Cf. A225425 (number of solutions with c < 10^n).
Cf. A225426 (triples of numbers a,b,c).

Programs

  • Mathematica
    rad[n_] := If[n==1, 1, Times@@(Transpose[FactorInteger[n]][[1]])]; nn=1000; Do[If[ !PrimeQ[c], Do[b=c-a; If[GCD[a,b]==1 && rad[a*b*c]
    				
  • Python
    from itertools import count, islice
    from math import prod, gcd
    from sympy import primefactors
    def A130510_gen(startvalue=1): # generator of terms >= startvalue
        for c in count(max(startvalue,1)):
            pc = set(primefactors(c))
            for a in range(1,(c>>1)+1):
                b = c-a
                if gcd(a,b)==1 and c>prod(set(primefactors(a))|set(primefactors(b))|pc):
                    yield c
    A130510_list = list(islice(A130510_gen(),30)) # Chai Wah Wu, Oct 19 2023

A225426 The triples of numbers (a,b,c) that are "abc-hits".

Original entry on oeis.org

1, 8, 9, 5, 27, 32, 1, 48, 49, 1, 63, 64, 1, 80, 81, 32, 49, 81, 4, 121, 125, 3, 125, 128, 1, 224, 225, 1, 242, 243, 2, 243, 245, 7, 243, 250, 13, 243, 256, 81, 175, 256, 1, 288, 289, 100, 243, 343, 32, 343, 375, 5, 507, 512, 169, 343, 512, 1, 512, 513, 27, 512, 539
Offset: 1

Views

Author

T. D. Noe, May 22 2013

Keywords

Comments

Let rad(x) be the function that computes the squarefree kernel of x (see A007947). A triple {a,b,c} of positive integers with a+b=c, gcd(a,b)=1 and c > rad(a*b*c) is called an abc-hit.

Crossrefs

Cf. A130510, A130511, A130512 (c, a, and rad(a*b*c)).
Cf. A225425 (number of solutions with c < 10^n).

Programs

  • Mathematica
    rad[n_] := If[n == 1, 1, Times @@ (Transpose[FactorInteger[n]][[1]])]; nn = 1000; t = {}; r = Table[rad[n], {n, nn}]; Do[If[! PrimeQ[c], Do[b = c - a; If[GCD[a, b] == 1 && r[[a]]*r[[b]]*r[[c]] < c, num++; AppendTo[t, {a, b, c}]], {a, c/2}]], {c, 2, nn}]; t

A216370 Number of ABC triples with quality q > 1 and c < 10^n.

Original entry on oeis.org

1, 6, 31, 120, 418, 1268, 3499, 8987, 22316, 51677, 116978, 252856, 528275, 1075319, 2131671, 4119410, 7801334, 14482059
Offset: 1

Views

Author

Jonathan Vos Post, Sep 05 2012

Keywords

Examples

			a(2) = 6 because there are 6 (a,b,c) triples with c < 10^2 and q > 1. Those triples are {1,8,9}, {1,48,49}, {1,63,64}, {1,80,81}, {5,27,32}, and {32,49,81}.
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, 2004, ISBN 0-387-20860-7.
  • Carl Pomerance, Computational Number Theory, The Princeton Companion to Mathematics, Princeton University Press, 2008, pp. 361-362.

Crossrefs

Programs

  • Mathematica
    rad[n_] := Times @@ Transpose[FactorInteger[n]][[1]]; Table[t = {}; mx = 10^n; Do[c = a + b; If[c < mx && GCD[a, b] == 1 && Log[c] > Log[rad[a*b*c]], AppendTo[t, {a, b, c}]], {a, mx/2}, {b, a, mx - a}]; Length[t], {n, 3}] (* T. D. Noe, Sep 06 2012 *)

A225425 Number of "abc-hits" with c < 10^n.

Original entry on oeis.org

1, 6, 31, 120, 418, 1268, 3499, 8987, 22316, 51677, 116978, 252856, 528275, 1075319, 2131671, 4119410, 7801334, 14482065
Offset: 1

Views

Author

T. D. Noe, May 22 2013

Keywords

Comments

Let rad(x) be the function that computes the squarefree kernel of x (see A007947). A triple {a,b,c} of positive integers with a+b=c, gcd(a,b)=1 and c > rad(a*b*c) is called an abc-hit.
The first 6 terms were computed using A130510. More terms were found on the Wikipedia page.

Examples

			The only solution under 10 is 1 + 8 = 9.
		

Crossrefs

Cf. A130510, A130511, A130512 (c, a, and rad(a*b*c)).
Cf. A225426 (a,b,c in one sequence).
Showing 1-4 of 4 results.