cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A120498 Numbers C from the ABC conjecture.

Original entry on oeis.org

9, 32, 49, 64, 81, 125, 128, 225, 243, 245, 250, 256, 289, 343, 375, 512, 513, 539, 625, 676, 729, 961, 968, 1025, 1029, 1216, 1331, 1369, 1587, 1681, 2048, 2057, 2187, 2197, 2304, 2312, 2401, 2500, 2673, 3025, 3072, 3125, 3136, 3211, 3481, 3584, 3773, 3888
Offset: 1

Views

Author

R. J. Mathar, Aug 06 2006

Keywords

Comments

C-values are not repeated: (A,B,C)=(13,243,256) and (A,B,C)=(81,175,256) are only represented once, by 256, in the list, for example.

Examples

			For A=1, B=63 and C=64, C=64 is in the list because 1 and 63 are coprime,
because the set of prime factors of 1, 63=3^2*7 and 64=2^6 has the product
of prime factors 3*2*7=42 and this product is smaller than 64.
		

Crossrefs

Cf. A130510 (values of c in the list of "abc-hits").

Programs

  • Mathematica
    rad[n_] := Times @@ First /@ FactorInteger[n]; isABC[a_, b_, c_] := (If[a + b != c || GCD[a, b] != 1, Return[0]]; r = rad[a*b*c]; If[r < c, Return[1], Return[0]]); isC[c_] := (For[a = 1, a <= Floor[c/2], a++, If[isABC[a, c - a, c] != 0, Return[1]]]; Return[0]); Select[Range[4000], isC[#] == 1 & ] (* Jean-François Alcover, Jun 24 2013, translated and adapted from Pari *)
  • PARI
    isABC(a,b,c)={ a+b==c && gcd(a,b)==1 && A007947(a*b*c)M. F. Hasler, Jan 16 2015
    isC(c)={ for(a=1, floor(c/2), if( isABC(a,c-a,c), return(1) )); return(0); }
    { for(n=1,6000, if( isC(n), print1(n,","))) }
    
  • PARI
    is_A120498(c)={for(a=1,c\2, gcd(a,c-a)==1 && A007947(a*(c-a)*c)M. F. Hasler, Jan 16 2015
    
  • Python
    from itertools import count, islice
    from math import prod, gcd
    from sympy import primefactors
    def A120498_gen(startvalue=1): # generator of terms >= startvalue
        for c in count(max(startvalue,1)):
            pc = set(primefactors(c))
            for a in range(1,(c>>1)+1):
                b = c-a
                if gcd(a,b)==1 and c>prod(set(primefactors(a))|set(primefactors(b))|pc):
                    yield c
                    break
    A120498_list = list(islice(A120498_gen(),30)) # Chai Wah Wu, Oct 19 2023

Formula

A+B=C; gcd(A,B)=1; A007947(A*B*C) < C.

A130512 ABC conjecture: values of rad(a*b*c) in the list of "abc-hits".

Original entry on oeis.org

6, 30, 42, 42, 30, 42, 110, 30, 210, 66, 210, 210, 78, 210, 102, 210, 210, 390, 182, 114, 462, 390, 210, 510, 390, 546, 330, 390, 690, 930, 770, 410, 210, 570, 462, 330, 1122, 1110, 1518, 1230, 690, 1190, 570, 1122, 1122, 834, 2010, 390, 1794, 1974, 510, 210
Offset: 1

Views

Author

T. D. Noe, Jun 01 2007

Keywords

Crossrefs

Cf. A130510.

Programs

  • Python
    from itertools import count, islice
    from math import prod, gcd
    from sympy import primefactors
    def A130512_gen(): # generator of terms
        for c in count(1):
            pc = set(primefactors(c))
            for a in range(1,(c>>1)+1):
                b = c-a
                if gcd(a,b)==1 and c>(d:=prod(set(primefactors(a))|set(primefactors(b))|pc)):
                    yield d
    A130512_list = list(islice(A130512_gen(),30)) # Chai Wah Wu, Oct 19 2023

A225426 The triples of numbers (a,b,c) that are "abc-hits".

Original entry on oeis.org

1, 8, 9, 5, 27, 32, 1, 48, 49, 1, 63, 64, 1, 80, 81, 32, 49, 81, 4, 121, 125, 3, 125, 128, 1, 224, 225, 1, 242, 243, 2, 243, 245, 7, 243, 250, 13, 243, 256, 81, 175, 256, 1, 288, 289, 100, 243, 343, 32, 343, 375, 5, 507, 512, 169, 343, 512, 1, 512, 513, 27, 512, 539
Offset: 1

Views

Author

T. D. Noe, May 22 2013

Keywords

Comments

Let rad(x) be the function that computes the squarefree kernel of x (see A007947). A triple {a,b,c} of positive integers with a+b=c, gcd(a,b)=1 and c > rad(a*b*c) is called an abc-hit.

Crossrefs

Cf. A130510, A130511, A130512 (c, a, and rad(a*b*c)).
Cf. A225425 (number of solutions with c < 10^n).

Programs

  • Mathematica
    rad[n_] := If[n == 1, 1, Times @@ (Transpose[FactorInteger[n]][[1]])]; nn = 1000; t = {}; r = Table[rad[n], {n, nn}]; Do[If[! PrimeQ[c], Do[b = c - a; If[GCD[a, b] == 1 && r[[a]]*r[[b]]*r[[c]] < c, num++; AppendTo[t, {a, b, c}]], {a, c/2}]], {c, 2, nn}]; t

A130511 ABC conjecture: values of a in the list of "abc-hits".

Original entry on oeis.org

1, 5, 1, 1, 1, 32, 4, 3, 1, 1, 2, 7, 13, 81, 1, 100, 32, 5, 169, 1, 27, 1, 49, 81, 1, 1, 25, 104, 200, 1, 343, 1, 5, 1, 8, 81, 243, 640, 256, 81, 23, 25, 243, 9, 11, 139, 512, 10, 81, 1, 125, 1, 25, 192, 1024, 99, 625, 1, 875, 53, 128, 11, 1024, 25, 459, 128, 648, 1, 1, 512, 7, 1
Offset: 1

Views

Author

T. D. Noe, Jun 01 2007

Keywords

Crossrefs

Cf. A130510.

Programs

  • Python
    from itertools import count, islice
    from math import prod, gcd
    from sympy import primefactors
    def A130511_gen(): # generator of terms
        for c in count(1):
            pc = set(primefactors(c))
            for a in range(1,(c>>1)+1):
                b = c-a
                if gcd(a,b)==1 and c>prod(set(primefactors(a))|set(primefactors(b))|pc):
                    yield a
    A130511_list = list(islice(A130511_gen(),30)) # Chai Wah Wu, Oct 19 2023

A366428 Hypotenuse numbers w of Pythagorean triples (u, v, w) for which (u^2, v^2, w^2) is an "abc-hit".

Original entry on oeis.org

25, 41, 65, 125, 145, 289, 337, 377, 425, 625, 677, 841, 845, 1025, 1201, 1625, 1681, 1985, 2125, 2197, 2305, 2873, 3125, 3281, 3425, 3721, 4097, 4225, 4481, 4705, 4825, 4901, 4913, 5329, 6401, 6625, 6725, 6845, 7585, 7813, 7817, 8065, 8177, 9409, 10625, 10985
Offset: 1

Views

Author

Felix Huber, Oct 13 2023

Keywords

Comments

(a, b, c) is an ABC triple if gcd(a, b) = 1 and a + b = c. ABC triples with c > rad(a*b*c) are called "abc-hits". For primitive Pythagorean triples (u, v, w) it is u^2 + v^2 = w^2 and gcd(u^2, v^2) = 1. (u^2, v^2, w^2) are therefore ABC triples. They are then "abc-hits" if in addition w^2 > rad(u^2*v^2*w^2). If (u, v, w) is a non-primitive Pythagorean triple, (u^2, v^2, w^2) is not an ABC triple.
The corresponding values of min(u, v) and max(u, v) are in the sequences A366674 and A366675.
w of primitive Pythagorean triples (u, v, w) with A007947(u^2*v^2*w^2) < w^2.
Subsequence of intersection of A020882 and sqrt(A130510).

Examples

			25 from the primitive Pythagorean triple (7, 24, 25) is in the sequence, because 7^2 + 24^2 = 25^2, gcd(7^2, 24^2) = 1 and 25^2 = 625 > rad(7^2*24^2*25^2) = 7*2*3*5 = 210.
		

Crossrefs

Cf. A366674, A366675 (corresponding values of min(u, v) and max(u, v)).
Cf. A020882 (hypotenuses of primitive Pythagorean triangles), A130510 ("abc-hits"), A007947 (squarefree kernel).

A216370 Number of ABC triples with quality q > 1 and c < 10^n.

Original entry on oeis.org

1, 6, 31, 120, 418, 1268, 3499, 8987, 22316, 51677, 116978, 252856, 528275, 1075319, 2131671, 4119410, 7801334, 14482059
Offset: 1

Views

Author

Jonathan Vos Post, Sep 05 2012

Keywords

Examples

			a(2) = 6 because there are 6 (a,b,c) triples with c < 10^2 and q > 1. Those triples are {1,8,9}, {1,48,49}, {1,63,64}, {1,80,81}, {5,27,32}, and {32,49,81}.
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, 2004, ISBN 0-387-20860-7.
  • Carl Pomerance, Computational Number Theory, The Princeton Companion to Mathematics, Princeton University Press, 2008, pp. 361-362.

Crossrefs

Programs

  • Mathematica
    rad[n_] := Times @@ Transpose[FactorInteger[n]][[1]]; Table[t = {}; mx = 10^n; Do[c = a + b; If[c < mx && GCD[a, b] == 1 && Log[c] > Log[rad[a*b*c]], AppendTo[t, {a, b, c}]], {a, mx/2}, {b, a, mx - a}]; Length[t], {n, 3}] (* T. D. Noe, Sep 06 2012 *)

A225425 Number of "abc-hits" with c < 10^n.

Original entry on oeis.org

1, 6, 31, 120, 418, 1268, 3499, 8987, 22316, 51677, 116978, 252856, 528275, 1075319, 2131671, 4119410, 7801334, 14482065
Offset: 1

Views

Author

T. D. Noe, May 22 2013

Keywords

Comments

Let rad(x) be the function that computes the squarefree kernel of x (see A007947). A triple {a,b,c} of positive integers with a+b=c, gcd(a,b)=1 and c > rad(a*b*c) is called an abc-hit.
The first 6 terms were computed using A130510. More terms were found on the Wikipedia page.

Examples

			The only solution under 10 is 1 + 8 = 9.
		

Crossrefs

Cf. A130510, A130511, A130512 (c, a, and rad(a*b*c)).
Cf. A225426 (a,b,c in one sequence).

A272234 Least positive integer c such that (n, c-n, c) is an abc-hit.

Original entry on oeis.org

9, 245, 128, 125, 32, 214375, 250, 9, 2057, 2197, 2187, 5021875, 256, 658503, 85184, 6875, 5120, 148046893, 6144, 19683, 327701, 23882769, 2048, 1830125, 729, 3536405, 32, 50653, 19712, 75926359382399, 19683, 81, 2000033, 793071909, 4131, 313046875, 32805, 2366250327
Offset: 1

Views

Author

Vladimir Letsko, Apr 23 2016

Keywords

Comments

An abc-hit is a triple of coprime positive integers a, b, c such that a + b = c and rad(abc) < c, where rad(n) is the largest squarefree number dividing n.

Examples

			a(2) = 245 because rad(2*243*245) = 2*3*35 = 210 < 245, hence (2, 243, 245) is an abc-hit and (2, c-2, c) isn't an abc-triple for every c < 245.
		

Crossrefs

Cf. A272236 (corresponding values of b).
Cf. A120498, A130510 (possible values of c in abc-hits).
Cf. A225426 (triples of abc-hits).
Cf. A130512 (radicals of abc-hits).
Cf. A007947 (radicals).

Programs

  • Maple
    rad:=n -> mul(i,i in factorset(n)):
    min_c_for_a:=proc(n) local a,b,c,ra,rc;
    for a to n do
    ra:=rad(a):
    for c from a+1 do
    if igcd(a,c)=1 then rc:=rad(c):
    if ra*rc
    				

Extensions

More terms from Jinyuan Wang, Jun 08 2022

A272236 Least positive integer b such that (n, b, n+b) is an abc-hit.

Original entry on oeis.org

8, 243, 125, 121, 27, 214369, 243, 1, 2048, 2187, 2176, 5021863, 243, 658489, 85169, 6859, 5103, 148046875, 6125, 19663, 327680, 23882747, 2025, 1830101, 704, 3536379, 5, 50625, 19683, 75926359382369, 19652, 49, 2000000, 793071875, 4096, 313046839, 32768, 2366250289
Offset: 1

Views

Author

Vladimir Letsko, Apr 23 2016

Keywords

Comments

An abc-hit is a triple of coprime positive integers a, b, c such that a + b = c and rad(abc) < c, where rad(n) is the largest squarefree number dividing n.

Examples

			a(3) = 125 because rad(3*125*128) = 3*5*2 = 31 < 128, hence (3, 125, 128) is an abc-hit and (3, b, b+3) isn't an abc-hit for every b < 125.
		

Crossrefs

Cf. A272239 (analog of this sequence taking into account that n - the smallest element of the triple).
Cf. A272234 (corresponding values of c).
Cf. A120498, A130510 (possible values of c in abc-hits).
Cf. A225426 (triples of abc-hits).
Cf. A130512 (radicals of abc-hits).
Cf. A007947 (radicals).

Programs

  • Maple
    rad:=n -> mul(i,i in factorset(n)):
    min_c_for_a:=proc(n) local a,b,c,ra,rc;
    for a to n do
    ra:=rad(a):
    for c from a+1 do
    if igcd(a,c)=1 then rc:=rad(c):
    if ra*rc
    				

Extensions

More terms from Jinyuan Wang, Jun 08 2022

A272239 Least positive integer b such that b > n and (n, b, n+b) is an abc-hit.

Original entry on oeis.org

8, 243, 125, 121, 27, 214369, 243, 1323, 2048, 2187, 2176, 5021863, 243, 658489, 85169, 6859, 5103, 148046875, 6125, 19663, 327680, 23882747, 2025, 1830101, 704, 3536379, 512, 50625, 19683, 75926359382369, 19652, 49, 2000000, 793071875, 4096, 313046839, 32768
Offset: 1

Views

Author

Vladimir Letsko, Apr 23 2016

Keywords

Comments

An abc-hit is a triple of coprime positive integers a, b, c such that a + b = c and rad(abc) < c, where rad(n) is the largest squarefree number dividing n.

Examples

			a(8) = 1323 because rad(8*1323*1331) = 2*21*11 = 462 < 1331, hence (8, 1323, 1331) is an abc-hit and (8, b, b+3) isn't an abc-hit for every b where 8 < b < 1323.
		

Crossrefs

Cf. A272240 (corresponding values of c).
Cf. A272236 (analog of this sequence without assumption that n - the smallest element of the triple).
Cf. A120498, A130510 (possible values of c in abc-hits).
Cf. A225426 (triples of abc-hits).
Cf. A130512 (radicals of abc-hits).
Cf. A007947 (radicals).

Programs

  • Maple
    rad:=n -> mul(i,i in factorset(n)):
    min_c_for_a:=proc(n) local a,b,c,ra,rc;
    for a to n do
    ra:=rad(a):
    for c from 2*a+1 do
    if igcd(a,c)=1 then rc:=rad(c):
    if ra*rc
    				
  • PARI
    rad(x, y, z) = my(f=factor(x*y*z)[, 1]~); prod(i=1, #f, f[i])
    is_abc_hit(x, y, z) = gcd(x, y)==1 && gcd(x, z)==1 && gcd(y, z)==1 && rad(x, y, z) < z
    a(n) = my(b=n+1); while(!is_abc_hit(n, b, n+b), b++); b \\ Felix Fröhlich, May 08 2016

Extensions

More terms from Jinyuan Wang, Jun 08 2022
Showing 1-10 of 14 results. Next