A130595 Triangle read by rows: lower triangular matrix which is inverse to Pascal's triangle (A007318) regarded as a lower triangular matrix.
1, -1, 1, 1, -2, 1, -1, 3, -3, 1, 1, -4, 6, -4, 1, -1, 5, -10, 10, -5, 1, 1, -6, 15, -20, 15, -6, 1, -1, 7, -21, 35, -35, 21, -7, 1, 1, -8, 28, -56, 70, -56, 28, -8, 1, -1, 9, -36, 84, -126, 126, -84, 36, -9, 1, 1, -10, 45, -120, 210, -252, 210, -120, 45, -10, 1, -1, 11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1
Offset: 0
Examples
Triangle begins with T(0,0): 1; -1, 1; 1, -2, 1; -1, 3, -3, 1; 1, -4, 6, -4, 1; -1, 5, -10, 10, -5, 1; 1, -6, 15, -20, 15, -6, 1; -1, 7, -21, 35, -35, 21, -7, 1; 1, -8, 28, -56, 70, -56, 28, -8, 1; -1, 9, -36, 84, -126, 126, -84, 36, -9, 1; ... As polynomials: + 1; - 1 + 1 x; + 1 - 2 x + 1 x^2; - 1 + 3 x - 3 x^2 + 1 x^3; + 1 - 4 x + 6 x^2 - 4 x^3 + 1 x^4;
Links
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- Shishuo Fu, Yaling Wang, Bijective recurrences concerning two Schröder triangles, arXiv:1908.03912 [math.CO], 2019.
- Tian-Xiao He and Renzo Sprugnoli, Sequence characterization of Riordan arrays, Discrete Math. 309 (2009), no. 12, 3962-3974. [_N. J. A. Sloane_, Nov 26 2011]
- Wikipedia, Relation between binomial coefficients and harmonic numbers.
- Index entries for triangles and arrays related to Pascal's triangle
Crossrefs
Programs
-
Haskell
a130595 n = a130595_list !! n a130595_list = concat $ iterate ([-1,1] *) [1] instance Num a => Num [a] where fromInteger k = [fromInteger k] (p:ps) + (q:qs) = p + q : ps + qs ps + qs = ps ++ qs (p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs * = [] -- Reinhard Zumkeller, Apr 02 2011
-
Haskell
a130595 n k = a130595_tabl !! n !! k a130595_row n = a130595_tabl !! n a130595_tabl = iterate (\row -> zipWith (-) ([0] ++ row) (row ++ [0])) [1] -- Reinhard Zumkeller, Apr 13 2013
-
Magma
[(-1)^(n+k)*Binomial(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jun 22 2024
-
Maple
A130595 := proc(n,k) (-1)^(n+k)*binomial(n,k) ; end proc: # R. J. Mathar, Feb 13 2013
-
Mathematica
nmax = 11; t[n_, k_] := (-1)^(n-k)*Binomial[n, k]; Flatten[ Table[ t[n, k], {n, 0, nmax}, {k, 0, n}] ] (* Jean-François Alcover, Dec 01 2011 *) Table[Binomial[-1-k, n-k],{n,0,11},{k,0,n}]//Flatten (* Robert A. Russell, Jan 16 2020 *)
-
PARI
A130595(n,k)=(-1)^(n+k)*binomial(n,k) \\ M. F. Hasler, Nov 01 2014
-
SageMath
flatten([[(-1)^(n+k)*binomial(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Jun 22 2024
Formula
T(n,k) = (-1)^(n-k)*binomial(n,k) = (-1)^(n-k)*A007318(n,k).
T(n,k) = T(n-1,k-1) - T(n-1,k). - Philippe Deléham, Oct 10 2011
G.f.: 1/(1+x-x*y). - R. J. Mathar, Aug 11 2015 [corrected by Anders Claesson, Nov 28 2015]
Conjecture from Dale Gerdemann, Nov 28 2015:
T(n,k) = (n-k+1)*T(n-1,k-1) + (k-1)*T(n-1,k).
Proof from Anders Claesson, Nov 29 2015:
It follows from T(n,k) = T(n-1,k-1) - T(n-1,k) and n*T(n-1,k-1) = k*T(n,k) that: (n-k+1)*T(n-1,k-1) + (k-1)*T(n-1,k) = n*T(n-1,k-1) - (k-1)*T(n-1,k-1) + (k-1)*T(n-1,k) = n*T(n-1,k-1) - (k-1)*(T(n-1,k-1) - T(n-1,k)) = n*T(n-1,k-1) - (k-1)*T(n,k) = n*T(n-1,k-1) - k*T(n,k) + T(n,k) = T(n,k). QED
(-1)^(n+1) Sum_{k=1..n} T(n,k)/k = Sum_{k=1..n} 1/k = H(n) where H(n) is the n-th harmonic number. For a proof see link "Relation between binomial coefficients and harmonic numbers". - Wolfgang Hintze, Oct 22 2016
T(n,k) = binomial(-1-k,n-k). - Robert A. Russell, Jan 16 2020
From G. C. Greubel, Jun 22 2024: (Start)
T(n, n-k) = (-1)^n*T(n, k).
Sum_{k=0..n} T(n, k) = A000007(n).
Sum_{k=0..n} (-1)^k*T(n, k) = A122803(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A039834(n+1).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A049347(n).
Sum_{k=0..n} k*T(n, k) = A063524(n).
Sum_{k=0..n} (-1)^k*k*T(n, k) = A085750(n+1).
Sum_{k=0..n} (k+1)*T(n, k) = A019590(n). (End)
Extensions
Edited by N. J. A. Sloane, Nov 27 2011
Comments