A130784 Period 3: repeat [1, 3, 2].
1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,1).
Programs
-
Magma
[(n mod 3) + ((n+1) mod 3) : n in [0..100]]; // Wesley Ivan Hurt, Jul 08 2014
-
Maple
A130784:=n->4-n+3*floor((n-1)/3); seq(A130784(n), n=0..100); # Wesley Ivan Hurt, Nov 30 2013
-
Mathematica
PadRight[{}, 111, {1,3,2}] (* Harvey P. Dale, Apr 20 2012 *) CoefficientList[Series[(1 + 3 x + 2 x^2)/(1 - x^3), {x, 0, 120}], x] (* Michael De Vlieger, Jul 02 2016 *)
-
PARI
a(n)=[1,3,2][n%3+1] \\ Charles R Greathouse IV, Jun 02 2011
Formula
a(n) = 4 - n + 3*floor((n-1)/3). - Wesley Ivan Hurt, Nov 30 2013
a(n) = A080425(n) + 1. - Wesley Ivan Hurt, Jul 08 2014
a(n) = 3 - ((n+5) mod 3) = 1 + (-n mod 3). - Wesley Ivan Hurt, Aug 29 2014
From Robert Israel, Aug 29 2014: (Start)
a(n) = 3*a(n-1)^2/2 - 13*a(n-1)/2 + 8.
O.g.f.: (1+z)*(1+2*z)/(1-z^3).
E.g.f.: 2*exp(z) - 2/sqrt(3)*exp(-z/2)*cos(sqrt(3)*z/2+Pi/6). (End)
a(n) = a(n-3) for n>2. - Wesley Ivan Hurt, Jul 02 2016
Comments