cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A245365 Semiprimes of the form n*(3*n-1)/2.

Original entry on oeis.org

22, 35, 51, 145, 247, 287, 1247, 1717, 2147, 2501, 3151, 4187, 5017, 7957, 11051, 13207, 15251, 16801, 17767, 20827, 26867, 33227, 49051, 63551, 68587, 71177, 76501, 81317, 96647, 112477, 118301, 128627, 147737, 159251, 182527, 232657, 237407, 241001, 250717
Offset: 1

Views

Author

K. D. Bajpai, Jul 19 2014

Keywords

Comments

Semiprimes among pentagonal numbers A000326 = { (3*n^2-n)/2; n >= 0 }.
We can have an odd prime n = 2k + 1 and (3n - 1)/2 = 3k + 1 also prime, i.e., k in A130800, or n = 2p with p prime and 3n - 1 = 6p - 1 also prime, i.e., p in A158015. Considering the ratio of the two prime factors, the two possibilities are mutually exclusive, so this is the disjoint union of {A033570(n)=(2n+1)(3n+1); n in A130800} = A255584 and {p*(6p-1); p in A158015}. - M. F. Hasler, Dec 13 2019

Examples

			n=6: (3*n^2-n)/2 = 51 = 3 * 17 which is semiprime. Hence, 51 appears in the sequence.
n=10: (3*n^2-n)/2 = 145 = 5 * 29 which is semiprime. Hence, 145 appears in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[(3*n^2 - n)/2, {n, 500}], PrimeOmega[#] == 2 &]
  • PARI
    select(n->bigomega(n)==2, vector(1000, n, (3*n^2-n)/2)) \\ Colin Barker, Jul 20 2014

A255584 Semiprimes of the form (4*n + 1)*(6*n + 1) = 24*n^2 + 10*n + 1.

Original entry on oeis.org

35, 247, 1247, 2501, 4187, 7957, 15251, 17767, 33227, 49051, 81317, 118301, 128627, 182527, 241001, 250717, 265651, 302177, 318551, 438751, 485357, 563347, 655051, 679057, 736751, 753667, 886657, 981317, 1010651, 1090987, 1163801, 1361837, 1563151
Offset: 1

Views

Author

Vincenzo Librandi, Feb 27 2015

Keywords

Comments

The first few values of n such that both n and n+1 give semiprimes in the sequence begin: 2607, 4017, 4062, 5967, 7107, 8472, 8892, ... In such cases, numbers of the form 10n+8 can always be expressed as the sum of the two primes 4n+1 and 6n+7. - Wesley Ivan Hurt, Feb 27 2015

Examples

			35 is in the sequence because 35 = 5*7 and 5, 7 are primes of the form 4*k+1 and 6*k+1 respectively.
247 is in the sequence because 247 = 13*19: both 13, 19 are primes of the form 6*k+1 and 13 also has the form 4*k+1.
		

Crossrefs

Subsequence of A245365.
Cf. A001358, A002144, A002476, A113941, A255607 (associated n).
Equals A033570(A130800). - M. F. Hasler, Dec 13 2019

Programs

  • Magma
    [(4*n+1)*(6*n+1): n in [1..300] | IsPrime(4*n+1) and IsPrime(6*n+1)];
    
  • Magma
    IsSemiprime:=func; [s: n in [1..300] | IsSemiprime(s) where s is 24*n^2+10*n+1];
    
  • Mathematica
    Select[Table[24 n^2 + 10 n + 1, {n, 300}], PrimeOmega[#] == 2 &] (* or *) f[n_] := Last /@ FactorInteger[n] == {1, 1}; Select[Array[24 #^2 + 10 # + 1 &, 300], f[#] &]
  • PARI
    for(n=1,250,if(bigomega(s=24*n^2+10*n+1)==2,print1(s,", "))) \\ Derek Orr, Feb 28 2015

Formula

a(n) = A033570(A130800(n)) = A033570(2*A255607(n)). - M. F. Hasler, Dec 13 2019

A255607 Numbers n such that both 4*n+1 and 6*n+1 are primes.

Original entry on oeis.org

1, 3, 7, 10, 13, 18, 25, 27, 37, 45, 58, 70, 73, 87, 100, 102, 105, 112, 115, 135, 142, 153, 165, 168, 175, 177, 192, 202, 205, 213, 220, 238, 255, 258, 277, 282, 298, 300, 312, 322, 325, 352, 357, 363, 370, 373, 417, 423, 447, 465, 472, 475, 513, 520
Offset: 1

Views

Author

Vincenzo Librandi, Feb 28 2015

Keywords

Comments

Numbers n such that A033570(2n) is semiprime.

Examples

			10 is in this sequence because 4*10+1=41 and 6*10+1=61 are primes.
		

Crossrefs

Cf. A255584: semiprimes of the form (4*n+1)*(6*n+1).

Programs

  • Magma
    [n: n in [1..600] | IsPrime(6*n+1) and IsPrime(4*n+1)];
    
  • Maple
    A255607:=n->`if`(isprime(4*n+1) and isprime(6*n+1), n, NULL): seq(A255607(n), n=1..600); # Wesley Ivan Hurt, Feb 28 2015
  • Mathematica
    Select[Range[600], PrimeQ[4 # + 1] && PrimeQ[6 # + 1] &]
    Select[Range[600],AllTrue[{4#,6#}+1,PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 22 2020 *)
  • PARI
    for(n=1,10^3,if(isprime(4*n+1)&&isprime(6*n+1),print1(n,", "))) \\ Derek Orr, Mar 01 2015
    
  • PARI
    select( is_A255607(n)=isprime(4*n+1)&&isprime(6*n+1), [1..555]) \\ M. F. Hasler, Dec 13 2019

Formula

a(n) = A130800(n)/2.

A330409 Semiprimes of the form p(6p - 1).

Original entry on oeis.org

22, 51, 145, 287, 1717, 2147, 3151, 5017, 11051, 13207, 16801, 20827, 26867, 63551, 68587, 71177, 76501, 96647, 112477, 147737, 159251, 232657, 237407, 308947, 314417, 342487, 433897, 480251, 587501, 602617, 722107, 772927, 834401, 861467, 879751, 907537, 945257, 1155887, 1177051
Offset: 1

Views

Author

M. F. Hasler, Dec 13 2019

Keywords

Examples

			A158015(1) = 2 is the smallest prime p such that 6p - 1 = 12 - 1 = 11 is also prime, whence a(1) = A049452(2) = 2*(6*2 - 1) = 22.
prime(5) = 11 is the smallest prime not in A024898 or A158015, because 6p - 1 is not a prime, therefore A049452(11) = 11*(6*11 - 1) is not in the sequence, and idem for A049452(13).
But prime(7) = 17 is in A024898 and A158015, so a(5) = A024898(A158015(5)) = A024898(17) = 17*(6*17 - 1).
		

Crossrefs

Cf. A024898 (6n-1 is prime), A158015 (primes), A049452 = {n(6n-1)}.
Complement of A255584 = A033570(A130800) (semiprimes (2n+1)(3n+1)) in A245365 (primes of the form n(3n-1)/2).

Programs

  • Mathematica
    Select[Table[p(6p-1),{p,500}],PrimeOmega[#]==2&] (* Harvey P. Dale, Apr 27 2022 *)
  • PARI
    [p*(6*p-1) | p<-primes(99), isprime(6*p-1)]

Formula

a(n) = A049452(A158015(n)) = p(6p - 1) with p = A158015(n).

A330410 a(n) = 6*prime(n) - 1.

Original entry on oeis.org

11, 17, 29, 41, 65, 77, 101, 113, 137, 173, 185, 221, 245, 257, 281, 317, 353, 365, 401, 425, 437, 473, 497, 533, 581, 605, 617, 641, 653, 677, 761, 785, 821, 833, 893, 905, 941, 977, 1001, 1037, 1073, 1085, 1145, 1157, 1181, 1193, 1265, 1337, 1361, 1373, 1397, 1433, 1445
Offset: 1

Views

Author

M. F. Hasler, Dec 13 2019

Keywords

Comments

Composite terms are a(k) with k in {5, 6, 11, 12, 13, 18, 20, 21, ...} = indices of primes missing in A158015. Primes are A016969(A158015 - 1).

Crossrefs

Cf. A000040 (primes), A016969 (6n+5), A024898 (6n-1 is prime), A158015 (primes in A024898), A049452 = {n(6n-1)}, A255584 = A033570(A130800) (semiprimes (2n+1)(3n+1)), A245365 (primes of the form n(3n-1)/2).

Programs

  • PARI
    apply( a(n)=6*prime(n)-1, [1..99])
    
  • PARI
    apply( n->6*n-1, primes(99))

Formula

a(n) = A016969(A000040(n)-1) = 6p - 1 with p = A000040(n) = prime(n).
Showing 1-5 of 5 results.