cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A129521 Numbers of the form p*q, p and q prime with q=2*p-1.

Original entry on oeis.org

6, 15, 91, 703, 1891, 2701, 12403, 18721, 38503, 49141, 79003, 88831, 104653, 146611, 188191, 218791, 226801, 269011, 286903, 385003, 497503, 597871, 665281, 721801, 736291, 765703, 873181, 954271, 1056331, 1314631, 1373653, 1537381
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 19 2007

Keywords

Comments

All terms are Fermat 4-pseudoprimes, i.e., satisfy 4^n == 4 (mod n). See A020136 and A122781.

Crossrefs

Subsequence of A006881, A129510, and A122781.
Intersection of A000384 and A001358, "hexagonal semiprimes". - Wesley Ivan Hurt, Jul 04 2013

Programs

  • Haskell
    a129521 n = p * (2 * p - 1) where p = a005382 n
    -- Reinhard Zumkeller, Nov 10 2013
  • Magma
    [2*n^2-n: n in [0..1000]|IsPrime(n) and IsPrime(2*n-1)]; // Vincenzo Librandi, Dec 27 2010
    
  • Mathematica
    p = Select[Prime[Range[155]], PrimeQ[2# - 1] &]; p (2p - 1) (* Robert G. Wilson v, Sep 11 2011 *)
  • PARI
    forprime(p=2,10000,q=2*p-1;if(isprime(q),print1(p*q,", ")))
    

Formula

a(n) = A005382(n)*A005383(n).

A255584 Semiprimes of the form (4*n + 1)*(6*n + 1) = 24*n^2 + 10*n + 1.

Original entry on oeis.org

35, 247, 1247, 2501, 4187, 7957, 15251, 17767, 33227, 49051, 81317, 118301, 128627, 182527, 241001, 250717, 265651, 302177, 318551, 438751, 485357, 563347, 655051, 679057, 736751, 753667, 886657, 981317, 1010651, 1090987, 1163801, 1361837, 1563151
Offset: 1

Views

Author

Vincenzo Librandi, Feb 27 2015

Keywords

Comments

The first few values of n such that both n and n+1 give semiprimes in the sequence begin: 2607, 4017, 4062, 5967, 7107, 8472, 8892, ... In such cases, numbers of the form 10n+8 can always be expressed as the sum of the two primes 4n+1 and 6n+7. - Wesley Ivan Hurt, Feb 27 2015

Examples

			35 is in the sequence because 35 = 5*7 and 5, 7 are primes of the form 4*k+1 and 6*k+1 respectively.
247 is in the sequence because 247 = 13*19: both 13, 19 are primes of the form 6*k+1 and 13 also has the form 4*k+1.
		

Crossrefs

Subsequence of A245365.
Cf. A001358, A002144, A002476, A113941, A255607 (associated n).
Equals A033570(A130800). - M. F. Hasler, Dec 13 2019

Programs

  • Magma
    [(4*n+1)*(6*n+1): n in [1..300] | IsPrime(4*n+1) and IsPrime(6*n+1)];
    
  • Magma
    IsSemiprime:=func; [s: n in [1..300] | IsSemiprime(s) where s is 24*n^2+10*n+1];
    
  • Mathematica
    Select[Table[24 n^2 + 10 n + 1, {n, 300}], PrimeOmega[#] == 2 &] (* or *) f[n_] := Last /@ FactorInteger[n] == {1, 1}; Select[Array[24 #^2 + 10 # + 1 &, 300], f[#] &]
  • PARI
    for(n=1,250,if(bigomega(s=24*n^2+10*n+1)==2,print1(s,", "))) \\ Derek Orr, Feb 28 2015

Formula

a(n) = A033570(A130800(n)) = A033570(2*A255607(n)). - M. F. Hasler, Dec 13 2019

A259677 Octagonal numbers (A000567) that are semiprimes (A001358).

Original entry on oeis.org

21, 65, 133, 341, 481, 1541, 4033, 5461, 6533, 8321, 11041, 13333, 14981, 31621, 38081, 48133, 56033, 79381, 83333, 97921, 109061, 111361, 133141, 188501, 197633, 206981, 219781, 229633, 256961, 282133, 293281, 328021, 340033, 360533, 416641, 481601, 556421
Offset: 1

Views

Author

Colin Barker, Jul 03 2015

Keywords

Examples

			The octagonal number 21 is in the sequence because 21 = 3 * 7.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:=func; [s: n in [2..500] | IsSemiprime(s) where s is n*(3*n-2) ]; // Vincenzo Librandi, Jul 04 2015
  • Mathematica
    a={}; Do[If[PrimeOmega[n (3 n - 2)]==2, AppendTo[a, n(3 n - 2)]], {n, 1, 200}]; a (* Vincenzo Librandi, Jul 04 2015 *)
    Select[PolygonalNumber[8,Range[500]],PrimeOmega[#]==2&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 15 2019 *)
  • PARI
    pg(m, n) = (n^2*(m-2)-n*(m-4))/2 \\ n-th m-gonal number
    select(n->bigomega(n)==2, vector(2000, n, pg(8, n)))
    

Formula

Equals A000567 intersect A001358.

A259676 Heptagonal numbers (A000566) that are semiprimes (A001358).

Original entry on oeis.org

34, 55, 235, 403, 469, 697, 1177, 1651, 2059, 2839, 4141, 5221, 6943, 9211, 9517, 13213, 13579, 21949, 23377, 25351, 29539, 31753, 34633, 37027, 53071, 62173, 68641, 74563, 78943, 93799, 96727, 118483, 130759, 144841, 164737, 171217, 187279, 191407, 196981
Offset: 1

Views

Author

Colin Barker, Jul 03 2015

Keywords

Comments

For these semiprimes k*(5*k-3)/2, the corresponding k are listed in A114517.

Examples

			The heptagonal number 34 is in the sequence because 34 = 2 * 17.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:=func; [s: n in [2..300] | IsSemiprime(s) where s is n*(5*n-3) div 2]; // Vincenzo Librandi, Jul 04 2015
  • Mathematica
    a={}; Do[If[PrimeOmega[n (5 n - 3) / 2]==2, AppendTo[a, n(5 n - 3) / 2]], {n, 1, 200}]; a (* Vincenzo Librandi, Jul 04 2015 *)
    Select[PolygonalNumber[7,Range[300]],PrimeOmega[#]==2&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 07 2021 *)
  • PARI
    pg(m, n) = (n^2*(m-2)-n*(m-4))/2 \\ n-th m-gonal number
    select(n->bigomega(n)==2, vector(2000, n, pg(7, n)))
    

Formula

Equals A000566 intersect A001358.

A381650 Pentagonal numbers which are products of three distinct primes.

Original entry on oeis.org

70, 590, 651, 715, 782, 1001, 1162, 1335, 1426, 2035, 2882, 5551, 5735, 6305, 6501, 7107, 7526, 8177, 8626, 9087, 9322, 10795, 11837, 12927, 14065, 20126, 22265, 24897, 25285, 26467, 28085, 29751, 31901, 32782, 34126, 35497, 36895, 37367, 38801, 40262, 41251, 43265, 44807, 45327
Offset: 1

Views

Author

Massimo Kofler, Mar 03 2025

Keywords

Examples

			A000326(7) = 70 = 7*(3*7-1)/2 = 2*5*7.
A000326(20) = 590 = 20*(3*20-1)/2 = 2*5*59.
A000326(21) = 651 = 21*(3*21-1)/2 = 3*7*31.
		

Crossrefs

Intersection of A000326 and A007304.
Cf. A245365.

Programs

  • Maple
    N:= 10^5: # for terms <= N
    ispent:= proc(n) issqr(1+24*n) and sqrt(1+24*n) mod 6 = 5 end proc:
    P:= select(isprime,[2,seq(i,i=3..N/6,2)]): R:= {}:
    nP:= nops(P):
    for i1 from 3 to nP do
       p1:= P[i1];
       for i2 from 1 to i1-1 while p1 * P[i2] <= N/2 do
         p1p2:= p1*P[i2];
         m:= ListTools:-BinaryPlace(P[1..i2-1],N/p1p2);
         V:=select(ispent, P[1..m] *~ p1p2);
         if V <> [] then
            R:= R union convert(V,set);
         fi
    od od:
    sort(convert(R,list));# Robert Israel, Mar 10 2025
  • Mathematica
    Select[Table[n*(3*n-1)/2, {n, 1, 200}], FactorInteger[#][[;; , 2]] == {1, 1, 1} &] (* Amiram Eldar, Mar 03 2025 *)
  • PARI
    lista(n)= my(i=0); vector(n, t, while(factor(t=i++*(3*i-1)/2)[, 2]~ != [1, 1, 1], ); t); \\ Ruud H.G. van Tol, Mar 10 2025

A330409 Semiprimes of the form p(6p - 1).

Original entry on oeis.org

22, 51, 145, 287, 1717, 2147, 3151, 5017, 11051, 13207, 16801, 20827, 26867, 63551, 68587, 71177, 76501, 96647, 112477, 147737, 159251, 232657, 237407, 308947, 314417, 342487, 433897, 480251, 587501, 602617, 722107, 772927, 834401, 861467, 879751, 907537, 945257, 1155887, 1177051
Offset: 1

Views

Author

M. F. Hasler, Dec 13 2019

Keywords

Examples

			A158015(1) = 2 is the smallest prime p such that 6p - 1 = 12 - 1 = 11 is also prime, whence a(1) = A049452(2) = 2*(6*2 - 1) = 22.
prime(5) = 11 is the smallest prime not in A024898 or A158015, because 6p - 1 is not a prime, therefore A049452(11) = 11*(6*11 - 1) is not in the sequence, and idem for A049452(13).
But prime(7) = 17 is in A024898 and A158015, so a(5) = A024898(A158015(5)) = A024898(17) = 17*(6*17 - 1).
		

Crossrefs

Cf. A024898 (6n-1 is prime), A158015 (primes), A049452 = {n(6n-1)}.
Complement of A255584 = A033570(A130800) (semiprimes (2n+1)(3n+1)) in A245365 (primes of the form n(3n-1)/2).

Programs

  • Mathematica
    Select[Table[p(6p-1),{p,500}],PrimeOmega[#]==2&] (* Harvey P. Dale, Apr 27 2022 *)
  • PARI
    [p*(6*p-1) | p<-primes(99), isprime(6*p-1)]

Formula

a(n) = A049452(A158015(n)) = p(6p - 1) with p = A158015(n).

A330410 a(n) = 6*prime(n) - 1.

Original entry on oeis.org

11, 17, 29, 41, 65, 77, 101, 113, 137, 173, 185, 221, 245, 257, 281, 317, 353, 365, 401, 425, 437, 473, 497, 533, 581, 605, 617, 641, 653, 677, 761, 785, 821, 833, 893, 905, 941, 977, 1001, 1037, 1073, 1085, 1145, 1157, 1181, 1193, 1265, 1337, 1361, 1373, 1397, 1433, 1445
Offset: 1

Views

Author

M. F. Hasler, Dec 13 2019

Keywords

Comments

Composite terms are a(k) with k in {5, 6, 11, 12, 13, 18, 20, 21, ...} = indices of primes missing in A158015. Primes are A016969(A158015 - 1).

Crossrefs

Cf. A000040 (primes), A016969 (6n+5), A024898 (6n-1 is prime), A158015 (primes in A024898), A049452 = {n(6n-1)}, A255584 = A033570(A130800) (semiprimes (2n+1)(3n+1)), A245365 (primes of the form n(3n-1)/2).

Programs

  • PARI
    apply( a(n)=6*prime(n)-1, [1..99])
    
  • PARI
    apply( n->6*n-1, primes(99))

Formula

a(n) = A016969(A000040(n)-1) = 6p - 1 with p = A000040(n) = prime(n).

A381919 Pentagonal numbers which are products of four distinct primes.

Original entry on oeis.org

210, 330, 2262, 3290, 4030, 4510, 4845, 5370, 6902, 7315, 8855, 10542, 13490, 15555, 15862, 16485, 18095, 18426, 19437, 21182, 23002, 24130, 28497, 29330, 30602, 31465, 36426, 44290, 46905, 49595, 50142, 54626, 60501, 67310, 67947, 72490, 77862, 79235, 83426, 84135
Offset: 1

Views

Author

Massimo Kofler, Mar 10 2025

Keywords

Examples

			A000326(12) = 210 = 12*(3*12-1)/2 = 2*3*5*7.
A000326(15) = 330 = 15*(3*15-1)/2 = 2*3*5*11.
A000326(57) = 4845 = 57*(3*57-1)/2 = 3*5*17*19.
		

Crossrefs

Intersection of A000326 and A046386.

Programs

  • Maple
    N:= 10^5: # for terms <= N
    P:= select(isprime,[2,seq(i,i=3..N/30,2)]): R:= {}:
    nP:= nops(P):
    for i1 from 3 to nP do
       p1:= P[i1];
       for i2 from 1 to i1-1 while p1 * P[i2] <= N/6 do
         p1p2:= p1*P[i2];
       for i3 from 1 to i2-1 while p1p2 * P[i3] <= N/2 do
         p1p2p3:= p1p2 * P[i3];
         m:= ListTools:-BinaryPlace(P[1..i3-1],N/p1p2p3);
         V:=select(ispent, P[1..m] *~ p1p2p3);
         if V <> [] then
            R:= R union convert(V,set);
         fi
    od od od:
    sort(convert(R,list)); # Robert Israel, Mar 10 2025
  • Mathematica
    Select[Table[n*(3*n-1)/2, {n, 1, 250}], FactorInteger[#][[;; , 2]] == {1, 1, 1, 1} &] (* Amiram Eldar, Mar 10 2025 *)
Showing 1-8 of 8 results.