A368660 Square array read by antidiagonals; the n-th row is the decimal expansion of the probability that the free polyomino with binary code A246521(n+1) appears in diffusion-limited aggregation on the square lattice.
1, 0, 1, 0, 0, 0, 0, 0, 5, 0, 0, 0, 7, 4, 0, 0, 0, 2, 2, 4, 0, 0, 0, 6, 7, 2, 0, 0, 0, 0, 8, 3, 6, 5, 2, 0, 0, 0, 7, 1, 4, 4, 0, 1, 0, 0, 0, 4, 2, 9, 6, 4, 5, 1, 0, 0, 0, 8, 5, 3, 2, 3, 1, 6, 1, 0, 0, 0, 9, 1, 9, 9, 0, 7, 2, 3, 0, 0, 0, 0, 0, 0, 5, 4, 0, 7, 7, 2, 6, 0, 0
Offset: 1
Examples
Array begins: 1.00000000000000000000... (monomino) 1.00000000000000000000... (domino) 0.57268748908837848701... (L tromino) 0.42731251091162151298... (I tromino) 0.42649395750130487018... (L tetromino) 0.05462942885357382723... (square tetromino) 0.20430093094721062115... (T tetromino) 0.15177943827373482673... (S tetromino) 0.16279624442417585468... (I tetromino) 0.13219133154126607406... (P pentomino) 0.06837364801045779482... (V pentomino) 0.03733461160442202363... (W pentomino) 0.14605587435506817264... (L pentomino) 0.15786504558818518196... (Y pentomino) 0.10529476741119453953... (N pentomino) 0.04279427184030725060... (U pentomino) 0.08270007323598911231... (T pentomino) 0.10865945602909460112... (F pentomino) 0.04929714951722524019... (Z pentomino) 0.01279646275569121440... (X pentomino) 0.05663730811109879467... (I pentomino) ...
References
- Frank Spitzer, Principles of Random Walk, 2nd edition, Springer, 1976. See Chapter III.
Links
- Pontus von Brömssen, Table of n, a(n) for n = 1..1596 (first 56 antidiagonals).
- Pontus von Brömssen, First 12 decimal digits and exact values of the form (Sum_{i=0..j} p_i*Pi^i)/(Sum_{i=0..k} q_i*Pi^i) for rows 1..56.
- Wikipedia, Diffusion-limited aggregation.
- Marek Wolf, Hitting probabilities of diffusion-limited-aggregation clusters, Physical Review A 43 (1991), 5504-5517; ResearchGate link.
- Index entries for sequences related to polyominoes.
Comments