cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130915 Number of permutations in the symmetric group S_n in which cycle lengths are odd and greater than 1.

Original entry on oeis.org

1, 0, 0, 2, 0, 24, 40, 720, 2688, 42560, 245376, 4072320, 31672960, 569935872, 5576263680, 109492807424, 1290701905920, 27616577064960, 380852962029568, 8845627365089280, 139696582370328576, 3506062524305162240, 62387728088875499520, 1684340707284076756992
Offset: 0

Views

Author

Vladeta Jovovic, Aug 23 2007

Keywords

Examples

			a(3)=2 because we have (123) and (132).
		

Crossrefs

Programs

  • Maple
    g:=exp(-x)*sqrt((1+x)/(1-x)): gser:=series(g,x=0,30): seq(factorial(n)*coeff(gser,x,n),n=0..20); # Emeric Deutsch, Aug 25 2007
    # second Maple program:
    a:= proc(n) option remember;
          `if`(n<3, 1/2, a(n-2)+a(n-3))*(n-1)*(n-2)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 18 2024
  • Mathematica
    nn=20;Drop[Range[0,nn]!CoefficientList[Series[((1+x)/(1-x))^(1/2)Exp[-x],{x,0,nn}],x],1]  (* Geoffrey Critzer, Dec 15 2012 *)
    a[n_] := (-1)^n*Sum[If[n==k, 1, (-1)^(n + k)*(n - k)!*Sum[Sum[2^(j - i)*StirlingS1[j, i]*Binomial[n - k - 1, j - 1]/j!, {j, i, n - k}], {i, 1, n - k}]*Binomial[n, k]], {k, 0, n}]; Flatten[Table[a[n], {n, 1, 20}]] (* Detlef Meya, Jan 18 2024 *)
  • PARI
    my(x='x+O('x^33)); Vec(serlaplace(exp(-x)*sqrt((1+x)/(1-x)))) \\ Joerg Arndt, Jan 18 2024

Formula

E.g.f.: exp(-x)*sqrt((1+x)/(1-x)).
a(n) ~ 2*n^n/exp(n+1). - Vaclav Kotesovec, Oct 08 2013
a(n) = (-1)^n*Sum_{k = 0..n} (1 if n = k, otherwise (-1)^(n + k)*(n - k)!*Sum_{i = 1..n - k} Sum_{j = i..n - k} 2^(j - i)*Stirling1(j, i)*binomial(n - k - 1, j - 1)/j!*binomial(n, k)). - Detlef Meya, Jan 18 2024
a(n) = (n-1)*(n-2)*(a(n-2)+a(n-3)) for n>=3. - Alois P. Heinz, Jan 18 2024

Extensions

More terms from Emeric Deutsch, Aug 25 2007
a(0)=1 prepended by Alois P. Heinz, Jan 18 2024