A130915 Number of permutations in the symmetric group S_n in which cycle lengths are odd and greater than 1.
1, 0, 0, 2, 0, 24, 40, 720, 2688, 42560, 245376, 4072320, 31672960, 569935872, 5576263680, 109492807424, 1290701905920, 27616577064960, 380852962029568, 8845627365089280, 139696582370328576, 3506062524305162240, 62387728088875499520, 1684340707284076756992
Offset: 0
Examples
a(3)=2 because we have (123) and (132).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..450 (terms n = 1..200 from Vincenzo Librandi)
Programs
-
Maple
g:=exp(-x)*sqrt((1+x)/(1-x)): gser:=series(g,x=0,30): seq(factorial(n)*coeff(gser,x,n),n=0..20); # Emeric Deutsch, Aug 25 2007 # second Maple program: a:= proc(n) option remember; `if`(n<3, 1/2, a(n-2)+a(n-3))*(n-1)*(n-2) end: seq(a(n), n=0..30); # Alois P. Heinz, Jan 18 2024
-
Mathematica
nn=20;Drop[Range[0,nn]!CoefficientList[Series[((1+x)/(1-x))^(1/2)Exp[-x],{x,0,nn}],x],1] (* Geoffrey Critzer, Dec 15 2012 *) a[n_] := (-1)^n*Sum[If[n==k, 1, (-1)^(n + k)*(n - k)!*Sum[Sum[2^(j - i)*StirlingS1[j, i]*Binomial[n - k - 1, j - 1]/j!, {j, i, n - k}], {i, 1, n - k}]*Binomial[n, k]], {k, 0, n}]; Flatten[Table[a[n], {n, 1, 20}]] (* Detlef Meya, Jan 18 2024 *)
-
PARI
my(x='x+O('x^33)); Vec(serlaplace(exp(-x)*sqrt((1+x)/(1-x)))) \\ Joerg Arndt, Jan 18 2024
Formula
E.g.f.: exp(-x)*sqrt((1+x)/(1-x)).
a(n) ~ 2*n^n/exp(n+1). - Vaclav Kotesovec, Oct 08 2013
a(n) = (-1)^n*Sum_{k = 0..n} (1 if n = k, otherwise (-1)^(n + k)*(n - k)!*Sum_{i = 1..n - k} Sum_{j = i..n - k} 2^(j - i)*Stirling1(j, i)*binomial(n - k - 1, j - 1)/j!*binomial(n, k)). - Detlef Meya, Jan 18 2024
a(n) = (n-1)*(n-2)*(a(n-2)+a(n-3)) for n>=3. - Alois P. Heinz, Jan 18 2024
Extensions
More terms from Emeric Deutsch, Aug 25 2007
a(0)=1 prepended by Alois P. Heinz, Jan 18 2024