A365974
Expansion of e.g.f. exp( Sum_{k>=0} x^(5*k+3) / (5*k+3) ).
Original entry on oeis.org
1, 0, 0, 2, 0, 0, 40, 0, 5040, 2240, 0, 1663200, 246400, 479001600, 605404800, 44844800, 699941088000, 274450176000, 355699625881600, 836634972096000, 156436600320000, 1437392253237248000, 1021561084051200000, 1124111547465274368000
Offset: 0
A054479
Number of sets of cycle graphs of 2n nodes where the 2-colored edges alternate colors.
Original entry on oeis.org
1, 0, 6, 120, 6300, 514080, 62785800, 10676746080, 2413521910800, 700039083744000, 253445583029839200, 112033456760809584000, 59382041886244720843200, 37175286835046004765120000, 27139206193305890195912400000, 22852066417535931447551359680000
Offset: 0
-
b:= proc(n) option remember; `if`(n=0, 1, add(
b(n-2*j)*binomial(n-1, 2*j-1)*(2*j-1)!, j=2..n/2))
end:
a:= n-> b(2*n):
seq(a(n), n=0..15); # Alois P. Heinz, Mar 06 2023
-
Table[(n-1)*(2*n)!^2 * HypergeometricPFQ[{2-n},{3/2-n},-1/2] / (4^n*(n-1/2)*(n!)^2), {n, 0, 20}] (* Vaclav Kotesovec, Mar 29 2014 after Mark van Hoeij *)
-
x='x+O('x^66); v=Vec(serlaplace(1/(sqrt(exp(x^2)*(1-x^2))))); vector(#v\2,n,v[2*n-1]) \\ Joerg Arndt, May 13 2013
A365980
Expansion of e.g.f. 1 / ( 1 - Sum_{k>=0} x^(2*k+3) / (2*k+3) ).
Original entry on oeis.org
1, 0, 0, 2, 0, 24, 80, 720, 5376, 53760, 490752, 6289920, 68766720, 1024607232, 13520332800, 226177695744, 3498759290880, 65257155624960, 1153246338220032, 23793010526453760, 472374431008948224, 10686755493583257600, 235406405307208826880
Offset: 0
A138022
Triangular array read by rows: e.g.f. sqrt(1-z^2)*exp(x*z)/(1+z).
Original entry on oeis.org
1, -1, 1, 1, -2, 1, -3, 3, -3, 1, 9, -12, 6, -4, 1, -45, 45, -30, 10, -5, 1, 225, -270, 135, -60, 15, -6, 1, -1575, 1575, -945, 315, -105, 21, -7, 1, 11025, -12600, 6300, -2520, 630, -168, 28, -8, 1, -99225, 99225, -56700, 18900, -5670, 1134, -252, 36, -9, 1, 893025, -992250, 496125, -189000, 47250, -11340, 1890, -360, 45, -10, 1
Offset: 1
Triangle starts:
1;
-1, 1;
1, -2, 1;
-3, 3, -3, 1;
9, -12, 6, -4, 1;
-45, 45, -30, 10, -5, 1;
225, -270, 135, -60, 15, -6, 1;
-1575, 1575, -945, 315, -105, 21, -7, 1;
11025, -12600, 6300, -2520, 630, -168, 28, -8, 1;
-99225, 99225, -56700, 18900, -5670, 1134, -252, 36, -9, 1;
...
-
g := sqrt(1-z^2)*exp(x*z)/(1+z); gser := n -> series(g, z, n+2):
seq(print(seq(coeff(n!*coeff(gser(n),z,n),x,i),i=0..n)),n=0..10); # Peter Luschny, Aug 21 2014
-
max=10; g=Exp[x*z]*Sqrt[(1-z)/(1+z)]; gser=Series[g,{z,0,max}]; p[n_]:=n!*Coefficient[gser,z,n]; T[n_,k_]:=Coefficient[p[n],x,k]; Flatten[Table[T[n,k],{n,0,max},{k,0,n}]]
T[n_, k_] := If[n==k, 1, (-1)^(n + k)*(n - k)!*Sum[Sum[2^(j - i)*StirlingS1[j, i]*Binomial[n - k - 1, j - 1]/j!, {j, i, n - k}], {i, 1, n - k}]*Binomial[n, k]];Flatten[Table[T[n, k], {n, 0, 10}, {k, 0, n}]] (* Detlef Meya, Jan 16 2024 *)
A365973
Expansion of e.g.f. exp( Sum_{k>=0} x^(4*k+3) / (4*k+3) ).
Original entry on oeis.org
1, 0, 0, 2, 0, 0, 40, 720, 0, 2240, 172800, 3628800, 246400, 49420800, 3531340800, 87223136000, 18450432000, 3006222336000, 225434879488000, 6411312940032000, 2744461025280000, 435228787435520000, 35074217524469760000, 1126838040745697280000
Offset: 0
Showing 1-5 of 5 results.
Comments