cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A365974 Expansion of e.g.f. exp( Sum_{k>=0} x^(5*k+3) / (5*k+3) ).

Original entry on oeis.org

1, 0, 0, 2, 0, 0, 40, 0, 5040, 2240, 0, 1663200, 246400, 479001600, 605404800, 44844800, 699941088000, 274450176000, 355699625881600, 836634972096000, 156436600320000, 1437392253237248000, 1021561084051200000, 1124111547465274368000
Offset: 0

Views

Author

Seiichi Manyama, Sep 23 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=0, N\5, x^(5*k+3)/(5*k+3)))))

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{k=0..floor((n-3)/5)} a(n-5*k-3)/(n-5*k-3)!.

A054479 Number of sets of cycle graphs of 2n nodes where the 2-colored edges alternate colors.

Original entry on oeis.org

1, 0, 6, 120, 6300, 514080, 62785800, 10676746080, 2413521910800, 700039083744000, 253445583029839200, 112033456760809584000, 59382041886244720843200, 37175286835046004765120000, 27139206193305890195912400000, 22852066417535931447551359680000
Offset: 0

Views

Author

Christian G. Bower, Mar 29 2000

Keywords

Comments

Also number of permutations in the symmetric group S_2n in which cycle lengths are even and greater than 2, cf. A130915. - Vladeta Jovovic, Aug 25 2007
a(n) is also the number of ordered pairs of disjoint perfect matchings in the complete graph on 2n vertices. The sequence A006712 is the number of ordered triples of perfect matchings. - Matt Larson, Jul 23 2016

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(
          b(n-2*j)*binomial(n-1, 2*j-1)*(2*j-1)!, j=2..n/2))
        end:
    a:= n-> b(2*n):
    seq(a(n), n=0..15);  # Alois P. Heinz, Mar 06 2023
  • Mathematica
    Table[(n-1)*(2*n)!^2 * HypergeometricPFQ[{2-n},{3/2-n},-1/2] / (4^n*(n-1/2)*(n!)^2), {n, 0, 20}] (* Vaclav Kotesovec, Mar 29 2014 after Mark van Hoeij *)
  • PARI
    x='x+O('x^66); v=Vec(serlaplace(1/(sqrt(exp(x^2)*(1-x^2))))); vector(#v\2,n,v[2*n-1]) \\ Joerg Arndt, May 13 2013

Formula

If b(2n)=a(n) then e.g.f. of b is 1/(sqrt(exp(x^2)*(1-x^2))).
a(n) = 4^n*(n-1)*gamma(n+1/2)^2*hypergeom([2-n],[3/2-n],-1/2)/(Pi*(n-1/2)). - Mark van Hoeij, May 13 2013
a(n) ~ 2^(2*n+1) * n^(2*n) / exp(2*n+1/2). - Vaclav Kotesovec, Mar 29 2014

A365980 Expansion of e.g.f. 1 / ( 1 - Sum_{k>=0} x^(2*k+3) / (2*k+3) ).

Original entry on oeis.org

1, 0, 0, 2, 0, 24, 80, 720, 5376, 53760, 490752, 6289920, 68766720, 1024607232, 13520332800, 226177695744, 3498759290880, 65257155624960, 1153246338220032, 23793010526453760, 472374431008948224, 10686755493583257600, 235406405307208826880
Offset: 0

Views

Author

Seiichi Manyama, Sep 23 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x-atanh(x))))

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-3)/2)} (2*k+2)! * binomial(n,2*k+3) * a(n-2*k-3).
E.g.f.: 1 / ( 1 + x - arctanh(x) ).

A138022 Triangular array read by rows: e.g.f. sqrt(1-z^2)*exp(x*z)/(1+z).

Original entry on oeis.org

1, -1, 1, 1, -2, 1, -3, 3, -3, 1, 9, -12, 6, -4, 1, -45, 45, -30, 10, -5, 1, 225, -270, 135, -60, 15, -6, 1, -1575, 1575, -945, 315, -105, 21, -7, 1, 11025, -12600, 6300, -2520, 630, -168, 28, -8, 1, -99225, 99225, -56700, 18900, -5670, 1134, -252, 36, -9, 1, 893025, -992250, 496125, -189000, 47250, -11340, 1890, -360, 45, -10, 1
Offset: 1

Views

Author

Roger L. Bagula, May 01 2008

Keywords

Examples

			Triangle starts:
       1;
      -1,      1;
       1,     -2,      1;
      -3,      3,     -3,     1;
       9,    -12,      6,    -4,     1;
     -45,     45,    -30,    10,    -5,    1;
     225,   -270,    135,   -60,    15,   -6,    1;
   -1575,   1575,   -945,   315,  -105,   21,   -7,  1;
   11025, -12600,   6300, -2520,   630, -168,   28, -8,  1;
  -99225,  99225, -56700, 18900, -5670, 1134, -252, 36, -9, 1;
  ...
		

Crossrefs

Cf. A130915 (row sums).

Programs

  • Maple
    g := sqrt(1-z^2)*exp(x*z)/(1+z); gser := n -> series(g, z, n+2):
    seq(print(seq(coeff(n!*coeff(gser(n),z,n),x,i),i=0..n)),n=0..10); # Peter Luschny, Aug 21 2014
  • Mathematica
    max=10; g=Exp[x*z]*Sqrt[(1-z)/(1+z)]; gser=Series[g,{z,0,max}]; p[n_]:=n!*Coefficient[gser,z,n]; T[n_,k_]:=Coefficient[p[n],x,k]; Flatten[Table[T[n,k],{n,0,max},{k,0,n}]]
    T[n_, k_] := If[n==k, 1, (-1)^(n + k)*(n - k)!*Sum[Sum[2^(j - i)*StirlingS1[j, i]*Binomial[n - k - 1, j - 1]/j!, {j, i, n - k}], {i, 1, n - k}]*Binomial[n, k]];Flatten[Table[T[n, k], {n, 0, 10}, {k, 0, n}]] (* Detlef Meya, Jan 16 2024 *)

Formula

The unsigned version has the e.g.f. exp(x*z)/sqrt((1-z)/(1+z)). - Peter Luschny, Aug 21 2014
T(n+3,k+1) = T(n+2,k) - T(n+2,k+1) + (n+1)*(n+2)*(T(n+1,k+1)-T(n,k)) with T(n,n) = 1, T(n,n-1) = -n, T(n+2,0) = T(n+1,0) + (n^2+n)*T(n,0). - Robert Israel, Aug 21 2014
T(n, k) = 1 if n = k, otherwise (-1)^(n+k)*(n-k)!*Sum_{i = 1..n-k} (Sum_{j = i..n-k} 2^(j-i)*Stirling1(j, i)*binomial(n-k-1, j-1)/j!)*binomial(n, k). - Detlef Meya, Jan 16 2024

Extensions

Edited by Peter Luschny and Joerg Arndt, Aug 21 2014

A365973 Expansion of e.g.f. exp( Sum_{k>=0} x^(4*k+3) / (4*k+3) ).

Original entry on oeis.org

1, 0, 0, 2, 0, 0, 40, 720, 0, 2240, 172800, 3628800, 246400, 49420800, 3531340800, 87223136000, 18450432000, 3006222336000, 225434879488000, 6411312940032000, 2744461025280000, 435228787435520000, 35074217524469760000, 1126838040745697280000
Offset: 0

Views

Author

Seiichi Manyama, Sep 23 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=0, N\4, x^(4*k+3)/(4*k+3)))))

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{k=0..floor((n-3)/4)} a(n-4*k-3)/(n-4*k-3)!.
Showing 1-5 of 5 results.