A131078 Periodic sequence (1, 1, 1, 1, 0, 0, 0, 0).
1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,-1,1).
Crossrefs
Programs
-
Magma
m:=105; [ [1, 1, 1, 1, 0, 0, 0, 0][ (n-1) mod 8 + 1 ]: n in [1..m] ];
-
Magma
&cat[[1, 1, 1, 1, 0, 0, 0,0]: n in [0..10]]; // Vincenzo Librandi, May 31 2015
-
Magma
[Floor((1+(-1)^((2*n+11-(-1)^n+2*(-1)^((2*n+5-(-1)^n)/4))/8))/2): n in [1..60]]; // Vincenzo Librandi, May 31 2015
-
PARI
{m=105; for(n=1, m, print1((n-1)%8<4, ","))}
-
Python
def A131078(n): return int(not n-1&4) # Chai Wah Wu, Jan 31 2023
Formula
a(1) = a(2) = a(3) = a(4) = 1, a(5) = a(6) = a(7) = a(8) = 0; for n > 8, a(n) = a(n-8).
G.f.: x/((1-x)*(1+x^4)).
a(n) = floor(((n+4) mod 8)/4). [Gary Detlefs, May 17 2011]
From Wesley Ivan Hurt, May 30 2015: (Start)
a(n) = a(n-1)-a(n-4)+a(n-5), n>5.
a(n) = (1+(-1)^((2*n+11-(-1)^n+2*(-1)^((2*n+5-(-1)^n)/4))/8))/2. (End)
From Ridouane Oudra, Nov 17 2019: (Start)
a(n) = binomial(n+3,4) mod 2
a(n) = floor((n+3)/4) - 2*floor((n+3)/8). (End)