A131179 a(n) = if n mod 2 == 0 then n*(n+1)/2, otherwise (n-1)*n/2 + 1.
0, 1, 3, 4, 10, 11, 21, 22, 36, 37, 55, 56, 78, 79, 105, 106, 136, 137, 171, 172, 210, 211, 253, 254, 300, 301, 351, 352, 406, 407, 465, 466, 528, 529, 595, 596, 666, 667, 741, 742, 820, 821, 903, 904, 990, 991, 1081, 1082, 1176, 1177, 1275, 1276, 1378, 1379, 1485
Offset: 0
Examples
[ 1] [ 2] [ 3] [ 4] [ 5] [ 6] [ 7] [ 8] [ 9] [10] [11] [12] [ 1] 1 3 4 10 11 21 22 36 37 55 56 78 ... [ 2] 2 5 9 12 20 23 35 38 54 57 77 ... [ 3] 6 8 13 19 24 34 39 53 58 76 ... [ 4] 7 14 18 25 33 40 52 59 75 ... [ 5] 15 17 26 32 41 51 60 74 ... [ 6] 16 27 31 42 50 61 73 ... [ 7] 28 30 43 49 62 72 ... [ 8] 29 44 48 63 71 ... [ 9] 45 47 64 70 ... [10] 46 65 69 ... [11] 66 68 ... [12] 67 ... ... - _Wesley Ivan Hurt_, Jun 24 2024
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Programs
-
Haskell
a131179 n = (n + 1 - m) * n' + m where (n', m) = divMod n 2 -- Reinhard Zumkeller, Oct 12 2013
-
Magma
[(n^2+1+(n-1)*(-1)^n )/2: n in [0..60]]; // Vincenzo Librandi, Feb 12 2016
-
Mathematica
LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 3, 4, 10}, 60] (* Jean-François Alcover, Feb 12 2016 *) Table[If[EvenQ[n],(n(n+1))/2,(n(n-1))/2+1],{n,0,60}] (* Harvey P. Dale, Jul 25 2024 *)
-
Python
def A131179(n): return n*(n+1)//2 + (1-n)*(n % 2) # Chai Wah Wu, May 24 2022
Formula
G.f.: -x*(1+2*x-x^2+2*x^3)/((1+x)^2*(x-1)^3). - R. J. Mathar, Sep 05 2012
a(n) = ( n^2+1+(n-1)*(-1)^n )/2. - Luce ETIENNE, Aug 19 2014
Comments