cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131179 a(n) = if n mod 2 == 0 then n*(n+1)/2, otherwise (n-1)*n/2 + 1.

Original entry on oeis.org

0, 1, 3, 4, 10, 11, 21, 22, 36, 37, 55, 56, 78, 79, 105, 106, 136, 137, 171, 172, 210, 211, 253, 254, 300, 301, 351, 352, 406, 407, 465, 466, 528, 529, 595, 596, 666, 667, 741, 742, 820, 821, 903, 904, 990, 991, 1081, 1082, 1176, 1177, 1275, 1276, 1378, 1379, 1485
Offset: 0

Views

Author

Philippe LALLOUET, Sep 16 2007

Keywords

Comments

From Wesley Ivan Hurt, Jun 24 2024: (Start)
Fill an array with the natural numbers n = 1,2,... along diagonals in alternating 'down' and 'up' directions. For n > 0, a(n) is row 1 of the boustrophedon-style array (see example).
In general, row k is given by (1+t^2+(n-k)*(-1)^t)/2, t = n+k-1. Here, k=1, n>0. (End)

Examples

			       [ 1] [ 2] [ 3] [ 4] [ 5] [ 6] [ 7] [ 8] [ 9] [10] [11] [12]
  [ 1]   1    3    4   10   11   21   22   36   37   55   56   78   ...
  [ 2]   2    5    9   12   20   23   35   38   54   57   77   ...
  [ 3]   6    8   13   19   24   34   39   53   58   76   ...
  [ 4]   7   14   18   25   33   40   52   59   75   ...
  [ 5]  15   17   26   32   41   51   60   74   ...
  [ 6]  16   27   31   42   50   61   73   ...
  [ 7]  28   30   43   49   62   72   ...
  [ 8]  29   44   48   63   71   ...
  [ 9]  45   47   64   70   ...
  [10]  46   65   69   ...
  [11]  66   68   ...
  [12]  67   ...
        ...
- _Wesley Ivan Hurt_, Jun 24 2024
		

Crossrefs

Cf. A128918.
For rows k = 1..10: this sequence (k=1) n>0, A373662 (k=2), A373663 (k=3), A374004 (k=4), A374005 (k=5), A374007 (k=6), A374008 (k=7), A374009 (k=8), A374010 (k=9), A374011 (k=10).

Programs

  • Haskell
    a131179 n = (n + 1 - m) * n' + m  where (n', m) = divMod n 2
    -- Reinhard Zumkeller, Oct 12 2013
    
  • Magma
    [(n^2+1+(n-1)*(-1)^n )/2: n in [0..60]]; // Vincenzo Librandi, Feb 12 2016
    
  • Mathematica
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 3, 4, 10}, 60] (* Jean-François Alcover, Feb 12 2016 *)
    Table[If[EvenQ[n],(n(n+1))/2,(n(n-1))/2+1],{n,0,60}] (* Harvey P. Dale, Jul 25 2024 *)
  • Python
    def A131179(n): return n*(n+1)//2 + (1-n)*(n % 2) # Chai Wah Wu, May 24 2022

Formula

G.f.: -x*(1+2*x-x^2+2*x^3)/((1+x)^2*(x-1)^3). - R. J. Mathar, Sep 05 2012
a(n) = ( n^2+1+(n-1)*(-1)^n )/2. - Luce ETIENNE, Aug 19 2014