cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A134517 Primes of the form 24*k - 1.

Original entry on oeis.org

23, 47, 71, 167, 191, 239, 263, 311, 359, 383, 431, 479, 503, 599, 647, 719, 743, 839, 863, 887, 911, 983, 1031, 1103, 1151, 1223, 1319, 1367, 1439, 1487, 1511, 1559, 1583, 1607, 1823, 1847, 1871, 2039, 2063, 2087, 2111, 2207, 2351, 2399, 2423, 2447, 2543
Offset: 1

Views

Author

Zak Seidov, Oct 29 2007

Keywords

Comments

Corresponding values of k are in A131210.
Is this the same sequence as A141376?
Primes in A183010. - Omar E. Pol, Oct 08 2011
Inert rational primes in the fields Q(sqrt(-1)), Q(sqrt(-2)), Q(sqrt(-3)). - Eyal Gruss, Nov 30 2022

Crossrefs

Intersection of A002145, A003627, A045355.

Programs

  • GAP
    Filtered(List([1..120],n->24*n-1),IsPrime); # Muniru A Asiru, Mar 04 2018
    
  • Maple
    select(isprime,[seq(24*n-1,n=1..120)]); # Muniru A Asiru, Mar 04 2018
  • Mathematica
    Select[Prime[Range[1000]],Mod[ #,24]==23&]
    Select[24*Range[200]-1,PrimeQ] (* Harvey P. Dale, Jun 17 2018 *)
  • PARI
    lista(nn) = for(k=1, nn, if(isprime(p=24*k-1), print1(p", "))) \\ Altug Alkan, Mar 04 2018

Formula

a(n) = A183010(A131210(n)). - Omar E. Pol, Nov 04 2017

A291900 Sum of the divisors of 24*n - 1, divided by 24, minus n.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 0, 0, 2, 0, 0, 2, 0, 3, 0, 0, 2, 0, 9, 0, 0, 2, 2, 7, 0, 4, 0, 3, 6, 0, 0, 3, 5, 7, 0, 0, 0, 0, 15, 6, 0, 3, 0, 9, 4, 0, 10, 0, 13, 5, 0, 3, 3, 22, 0, 4, 0, 5, 12, 0, 19, 0, 0, 13, 0, 0, 0, 10, 14, 4, 6, 7, 5, 19, 11, 0, 0, 0, 16, 5, 4, 12, 8, 28, 0, 0, 0, 0, 35, 6, 4, 0, 5, 32, 4, 18, 8, 0, 31, 0
Offset: 1

Views

Author

Omar E. Pol, Nov 02 2017

Keywords

Comments

The indices of the zeros give A131210.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[1, 24 n - 1]/24 - n; Array[a, 90] (* Robert G. Wilson v, Nov 04 2017 *)
  • PARI
    a(n) = sigma(24*n-1)/24 - n; \\ Michel Marcus, Nov 04 2017

Formula

a(n) = sigma(24*n-1)/24 - n = A000203(A183010(n))/24 - n = A280097(n)/24 - n = A280098(n) - n.
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/18 - 1/2 = 0.048311... . - Amiram Eldar, Mar 28 2024

A139527 Numbers n such that numbers 24n+5 are primes.

Original entry on oeis.org

0, 1, 2, 4, 6, 7, 8, 11, 12, 13, 16, 19, 21, 23, 27, 28, 29, 32, 33, 34, 39, 42, 44, 46, 49, 51, 53, 54, 57, 62, 67, 68, 71, 72, 78, 79, 81, 82, 83, 86, 89, 92, 93, 96, 97, 98, 99, 103, 106, 109, 112, 114, 116, 118, 119, 121, 123, 134, 141, 142, 144, 147, 148, 149, 153, 154
Offset: 1

Views

Author

Artur Jasinski, Apr 25 2008

Keywords

Comments

Numbers n such that:
24n+1 is prime see A111174, primes 24n+1 see A107008
24n+5 is prime see A139527, primes 24n+5 see A107003
24n+7 is prime see A139483, primes 24n+7 see A107006
24n+11 is prime A139528, primes 24n+11 see A107007
24n+13 is prime see A139529, primes 24n+13 see A139530
24n+17 is prime see A139531, primes 24n+17 see A107181
24n+19 is prime see A139532, primes 24n+19 see A141373
24n+23 is prime see A131210, primes 24n+23 see A134517

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[24 n + 5], AppendTo[a, n]], {n, 0, 200}]; a
    Select[Table[(Prime[n]-5)/24,{n,800}],IntegerQ] (* Harvey P. Dale, Feb 25 2016 *)
Showing 1-3 of 3 results.