cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131355 Partial sums of A065423 plus one.

Original entry on oeis.org

1, 1, 1, 3, 4, 8, 10, 16, 19, 27, 31, 41, 46, 58, 64, 78, 85, 101, 109, 127, 136, 156, 166, 188, 199, 223, 235, 261, 274, 302, 316, 346, 361, 393, 409, 443, 460, 496, 514, 552, 571, 611, 631, 673, 694, 738, 760, 806, 829, 877, 901, 951, 976, 1028, 1054, 1108
Offset: 0

Views

Author

Paul Curtz, Sep 30 2007

Keywords

Comments

Number of 132-avoiding even Grassmannian permutations of size n. - Juan B. Gil, Mar 10 2023

Crossrefs

Cf. A065423.

Programs

  • Magma
    [(6*n^2-10*n+17-(1+2*n)*(-1)^n)/16: n in [0..70]]; // Vincenzo Librandi, Jul 29 2015
  • Maple
    A065423 := proc(n) if n mod 2 <> 0 then n-1 ; else n/2-1 ; fi ; end: A131355 := proc(n) 1+add(A065423(i), i=1..n) ; end: seq(A131355(n),n=0..80) ; # R. J. Mathar, Oct 04 2007
  • Mathematica
    Table[(6 n^2 - 10 n + 17 - (1 + 2 n) (-1)^n)/16, {n, 0, 100}] (* Wesley Ivan Hurt, Jul 28 2015 *)
    LinearRecurrence[{1, 2, -2, -1, 1}, {1, 1, 1, 3, 4}, 70] (* Vincenzo Librandi, Jul 29 2015 *)
    Join[{1},Accumulate[LinearRecurrence[{0,2,0,-1},{0,0,2,1},100]]+1] (* Harvey P. Dale, May 28 2025 *)

Formula

From R. J. Mathar, Jul 17 2009: (Start)
G.f.: (1 - 2*x^2 + 2*x^3 + 2*x^4)/((1+x)^2*(1-x)^3).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5), n > 5. (End)
a(n) = (6*n^2 - 10*n + 17 - (1+2n)*(-1)^n)/16. - Wesley Ivan Hurt, Jul 28 2015
a(n) = 1 + binomial(n,2) - binomial(floor(n/2)+1,2). - Juan B. Gil, Mar 10 2023

Extensions

More terms from R. J. Mathar, Oct 04 2007