cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131455 Number of inequivalent properly oriented and labeled planar chord diagrams whose associated planar tree is a path on n + 1 vertices.

Original entry on oeis.org

1, 2, 18, 284, 7280, 273246, 14144592, 965491288, 84027112704, 9081387766810, 1193283000239616, 187340544144604212, 34633340434838499328, 7446726867419368499894, 1842612127654047957411840, 519870106084045866346942256, 165896395346243470375430193152, 59450668490817059243377908811698, 23773400714993519201980928470155264
Offset: 1

Views

Author

Peter Bala, Jul 13 2007

Keywords

Comments

a(n) = n times the number of "2 up, 2 down" permutations of length 2*n-1 = n*A005981(n-1) for n >= 2.
a(n) ~ (c_1)*n*(2*n - 1)!/(c_2)^(2n), where c_1 is a constant and c_2 = 1.87510... is the smallest positive solution of the equation cos(z)* cosh(z) + 1 = 0.

Examples

			From _Petros Hadjicostas_, Jul 25 2020: (Start)
For n = 2, the a(2)/2 = 1 "2 up, 2 down" permutation of length 2*2 - 1 = 3 is the following:
         3
        /
       2
      /
     1
For n = 3, the a(3)/3 = 6 "2 up, 2 down" permutations of length 2*3 - 1 = 5 are the following:
        5          5          5          5          5          5
       / \        / \        / \        / \        / \        / \
      3   4      4   3      2   4      3   4      4   3      4   2
     /     \    /     \    /     \    /     \    /     \    /     \
    1       2  1       2  1       3  2       1  2       1  3       1
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(
         `if`(t=2, b(o-j, u+j-1, 1), b(u+j-1, o-j, t+1)), j=1..o))
        end:
    a:= n-> n*b(0, 2*n-1, 0):
    seq(a(n), n=1..19);  # Alois P. Heinz, Nov 23 2021
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, Sum[If[t == 2,
         b[o - j, u + j - 1, 1], b[u + j - 1, o - j, t + 1]], {j, 1, o}]];
    a[n_] := n*b[0, 2*n - 1, 0];
    Table[a[n], {n, 1, 19}] (* Jean-François Alcover, Mar 07 2022, after Alois P. Heinz *)
  • PARI
    f(j,x,nn) = sum(k=0, 2*nn, (x^(4*k + j))/(4*k + j)!);
    g(x,nn) = (x/2)*(f(0,x,nn)*f(1,x,nn) - f(2,x,nn)*f(3,x,nn) + f(3,x,nn))/(f(0,x,nn)^2 - f(1,x,nn)*f(3,x,nn));
    lista(nn) = {default(seriesprecision, 2*nn); my(a=vector(nn)); for(n=1, nn, a[n] = (2*n)!*polcoef(Ser(g(x,nn)), 2*n)); a;} \\ Petros Hadjicostas, Jul 25 2020

Formula

E.g.f.: Sum_{n >= 1} a(n)*(x^(2*n))/(2*n)! = (x/2)*(f(0,x)*f(1,x) - f(2,x)*f(3,x) + f(3,x))/(f(0,x)^2 - f(1,x)*f(3,x)), where f(j,x) = Sum_{k >= 0} (x^(4*k + j))/(4*k + j)!, j = 0, 1, 2, 3, is the j-th generalized hyperbolic function.

Extensions

More terms from Petros Hadjicostas, Jul 25 2020