A131455 Number of inequivalent properly oriented and labeled planar chord diagrams whose associated planar tree is a path on n + 1 vertices.
1, 2, 18, 284, 7280, 273246, 14144592, 965491288, 84027112704, 9081387766810, 1193283000239616, 187340544144604212, 34633340434838499328, 7446726867419368499894, 1842612127654047957411840, 519870106084045866346942256, 165896395346243470375430193152, 59450668490817059243377908811698, 23773400714993519201980928470155264
Offset: 1
Examples
From _Petros Hadjicostas_, Jul 25 2020: (Start) For n = 2, the a(2)/2 = 1 "2 up, 2 down" permutation of length 2*2 - 1 = 3 is the following: 3 / 2 / 1 For n = 3, the a(3)/3 = 6 "2 up, 2 down" permutations of length 2*3 - 1 = 5 are the following: 5 5 5 5 5 5 / \ / \ / \ / \ / \ / \ 3 4 4 3 2 4 3 4 4 3 4 2 / \ / \ / \ / \ / \ / \ 1 2 1 2 1 3 2 1 2 1 3 1 (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..250
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- B. Shapiro and A. Vainshtein, Counting real rational functions with all real critical values, arXiv:math/0209062 [math.AG], 2002.
- B. Shapiro and A. Vainshtein, Counting real rational functions with all real critical values, Moscow Math. J., 3 (2003), 647-659.
- Eric Weisstein's World of Mathematics, Generalized Hyperbolic Functions.
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add( `if`(t=2, b(o-j, u+j-1, 1), b(u+j-1, o-j, t+1)), j=1..o)) end: a:= n-> n*b(0, 2*n-1, 0): seq(a(n), n=1..19); # Alois P. Heinz, Nov 23 2021
-
Mathematica
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, Sum[If[t == 2, b[o - j, u + j - 1, 1], b[u + j - 1, o - j, t + 1]], {j, 1, o}]]; a[n_] := n*b[0, 2*n - 1, 0]; Table[a[n], {n, 1, 19}] (* Jean-François Alcover, Mar 07 2022, after Alois P. Heinz *)
-
PARI
f(j,x,nn) = sum(k=0, 2*nn, (x^(4*k + j))/(4*k + j)!); g(x,nn) = (x/2)*(f(0,x,nn)*f(1,x,nn) - f(2,x,nn)*f(3,x,nn) + f(3,x,nn))/(f(0,x,nn)^2 - f(1,x,nn)*f(3,x,nn)); lista(nn) = {default(seriesprecision, 2*nn); my(a=vector(nn)); for(n=1, nn, a[n] = (2*n)!*polcoef(Ser(g(x,nn)), 2*n)); a;} \\ Petros Hadjicostas, Jul 25 2020
Formula
E.g.f.: Sum_{n >= 1} a(n)*(x^(2*n))/(2*n)! = (x/2)*(f(0,x)*f(1,x) - f(2,x)*f(3,x) + f(3,x))/(f(0,x)^2 - f(1,x)*f(3,x)), where f(j,x) = Sum_{k >= 0} (x^(4*k + j))/(4*k + j)!, j = 0, 1, 2, 3, is the j-th generalized hyperbolic function.
Extensions
More terms from Petros Hadjicostas, Jul 25 2020
Comments