A287335 Nonnegative numbers k such that 3*k + 2 is a cube.
2, 41, 170, 443, 914, 1637, 2666, 4055, 5858, 8129, 10922, 14291, 18290, 22973, 28394, 34607, 41666, 49625, 58538, 68459, 79442, 91541, 104810, 119303, 135074, 152177, 170666, 190595, 212018, 234989, 259562, 285791, 313730, 343433, 374954, 408347, 443666, 480965
Offset: 1
Links
- Bruno Berselli, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[9*n^3-9*n^2+3*n-1: n in [1..40]];
-
Mathematica
Table[9 n^3 - 9 n^2 + 3 n - 1, {n, 0, 40}] LinearRecurrence[{4,-6,4,-1},{2,41,170,443},40] (* Harvey P. Dale, Aug 28 2021 *)
-
Maxima
makelist(9*n^3-9*n^2+3*n-1, n, 1, 40);
-
Python
[9*n**3-9*n**2+3*n-1 for n in range(1,40)]
-
Sage
[9*n^3-9*n^2+3*n-1 for n in (1..40)]
Comments