A131520 Number of partitions of the graph G_n (defined below) into "strokes".
2, 6, 12, 22, 40, 74, 140, 270, 528, 1042, 2068, 4118, 8216, 16410, 32796, 65566, 131104, 262178, 524324, 1048614, 2097192, 4194346, 8388652, 16777262, 33554480, 67108914, 134217780, 268435510, 536870968, 1073741882, 2147483708
Offset: 1
Examples
Figure for G_4: o-o-o-o-o Two vertices on both sides are the same.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- James East, Jitender Kumar, James D. Mitchell, and Wilf A. Wilson, Maximal subsemigroups of finite transformation and partition monoids, arXiv:1706.04967 [math.GR], 2017. [_James Mitchell_ and _Wilf A. Wilson_, Jul 21 2017]
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
Programs
-
Magma
[2^n + 2*(n-1): n in [1..30]]; // G. C. Greubel, Feb 13 2021
-
Mathematica
Table[2^n + 2*(n-1), {n, 30}] (* G. C. Greubel, Feb 13 2021 *)
-
Sage
[2^n + 2*(n-1) for n in (1..30)] # G. C. Greubel, Feb 13 2021
Formula
a(n) = 2*(n-1) + 2^n = 2*A006127(n-1).
G.f.: 2*x*(1 - x - x^2)/((1-x)^2 * (1-2*x)). - R. J. Mathar, Nov 14 2007
a(n) = 4*a(n-1)-5*a(n-2)+2*a(n-3). - Wesley Ivan Hurt, May 20 2021
Extensions
More terms from Max Alekseyev, Sep 29 2007
Comments