cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131557 Triangular numbers that are the sums of five consecutive triangular numbers.

Original entry on oeis.org

55, 2485, 17020, 799480, 5479705, 257429395, 1764447310, 82891465030, 568146553435, 26690794309585, 182941425758080, 8594352876220660, 58906570947547645, 2767354935348742255, 18967732903684582930, 891079694829418784770, 6107551088415488155135
Offset: 1

Views

Author

Richard Choulet, Oct 06 2007

Keywords

Examples

			a(1) = 55 = 3+6+10+15+21.
		

Crossrefs

Cf. A129803.

Programs

  • Maple
    a:= n-> `if`(n<2, [0, 55][n+1], (<<0|1|0>, <0|0|1>, <1|-323|323>>^iquo(n-2, 2, 'r'). `if`(r=0, <<2485, 799480, 257429395>>, <<17020, 5479705, 1764447310>>))[1, 1]): seq(a(n), n=1..20); # Alois P. Heinz, Sep 25 2008, revised Dec 15 2011
  • Mathematica
    LinearRecurrence[{1, 322, -322, -1, 1}, {55, 2485, 17020, 799480, 5479705}, 20] (* Jean-François Alcover, Oct 05 2019 *)

Formula

The subsequences with odd indices and even indices satisfy the same recurrence relations: a(n+2) = 322*a(n+1) - a(n) - 680 and a(n+1) = 161*a(n) - 340 + 9*sqrt(320*a(n)^2 - 1360*a(n) - 175).
G.f.: -5*x*(11+486*x-635*x^2+2*x^4) / ( (x-1)*(x^2+18*x+1)*(x^2-18*x+1) ).
8*a(n) = 17 + 45*A007805(n) + 18*(-1)^n*A049629(n). - R. J. Mathar, Apr 28 2020

Extensions

More terms from Alois P. Heinz, Sep 25 2008
a(6) and a(8) corrected by Harvey P. Dale, Oct 02 2011
a(10), a(12), a(14) corrected at the suggestion of Harvey P. Dale by D. S. McNeil, Oct 02 2011