cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A144468 Final digit of multiples of 7.

Original entry on oeis.org

0, 7, 4, 1, 8, 5, 2, 9, 6, 3, 0, 7, 4, 1, 8, 5, 2, 9, 6, 3, 0, 7, 4, 1, 8, 5, 2, 9, 6, 3, 0, 7, 4, 1, 8, 5, 2, 9, 6, 3, 0, 7, 4, 1, 8, 5, 2, 9, 6, 3, 0, 7, 4, 1, 8, 5, 2, 9, 6, 3, 0, 7, 4, 1, 8, 5, 2, 9, 6, 3, 0, 7, 4, 1, 8, 5, 2, 9, 6, 3, 0, 7, 4, 1, 8, 5, 2, 9, 6, 3, 0, 7, 4, 1, 8, 5
Offset: 0

Views

Author

Paul Curtz, Oct 09 2008

Keywords

Comments

Period 10: repeat [0, 7, 4, 1, 8, 5, 2, 9, 6, 3]. The ten digits by jumps of three terms or a(3n). Also reverse of A131579(n+1), n =1..10, repeated.

Crossrefs

Cf. A131579.

Programs

Formula

a(n) = 7*n (mod 10) = -3*n (mod 10), n >= 0. See the name.
a(n+10) = a(n). - Wesley Ivan Hurt, Apr 16 2024

A172447 a(n) = (-1 + 5*2^(2*n + 1) - 3*n)/9.

Original entry on oeis.org

1, 4, 17, 70, 283, 1136, 4549, 18202, 72815, 291268, 1165081, 4660334, 18641347, 74565400, 298261613, 1193046466, 4772185879, 19088743532, 76354974145, 305419896598, 1221679586411, 4886718345664, 19546873382677, 78187493530730, 312749974122943, 1250999896491796
Offset: 0

Views

Author

Paul Curtz, Feb 03 2010

Keywords

Comments

a(n) mod 10 gives the 10-periodic sequence 1, 4, 7, 0, 3, 6, 9, 2, 5, 8 (and repeat, A131579 shifted, A144468 reversed) which contains all ten digits, that has a "palindromic" symmetry: 1 + 8 = 4 + 5 = 7 + 2 = 0 + 9 = 3 + 6 = 9.
The inverse binomial transform gives 1, 3, 10, 30, 90, ... (A062107 shifted). - R. J. Mathar, Feb 11 2010

Crossrefs

Cf. A072197 (first differences).

Programs

  • Magma
    [(-1+5*2^(2*n+1)-3*n)/9: n in [0..30]]; // Vincenzo Librandi, Aug 05 2011
    
  • Mathematica
    LinearRecurrence[{6, -9, 4}, {1, 4, 17}, 30] (* Harvey P. Dale, Mar 25 2016 *)
    ((-1 + 5 2^(2# + 1) - 3#)/9  &) /@ Range[0, 29] (* Alonso del Arte, Apr 25 2020 *)
  • PARI
    a(n)=(10*4^n-3*n)\9 \\ Charles R Greathouse IV, Jul 21 2015
    
  • Scala
    val powerOf2: LazyList[BigInt] = LazyList.iterate(1: BigInt)(_ * 2)
    (0 to 29).map(n => (-1 + 5 * powerOf2(2 * n + 1) - 3 * n)/9) // Alonso del Arte, Apr 25 2020

Formula

a(n) = 6*a(n - 1) - 9*a(n - 2) + 4*a(n - 3).
a(n + 1) - 4*a(n) = n.
a(n) = A172416(2n + 1).
G.f.: (1 - 2*x + 2*x^2)/((1 - 4*x) * (x - 1)^2). - R. J. Mathar, Feb 11 2010
E.g.f.: (10*exp(4*x) - (1 + 3*x)*exp(x))/9. - G. C. Greubel, Nov 02 2018

Extensions

Definition replaced by closed formula by R. J. Mathar, Feb 11 2010

A017359 a(n) = (10*n + 7)^7.

Original entry on oeis.org

823543, 410338673, 10460353203, 94931877133, 506623120463, 1954897493193, 6060711605323, 16048523266853, 37725479487783, 80798284478113, 160578147647843, 300124211606973, 532875860165503
Offset: 0

Views

Author

Keywords

Comments

The penultimate digit of a(n) is period 10, repeat (4,7,0,3,6,9,2,5,8,1) = A131579(n+8). - Paul Curtz, Mar 07 2011

Programs

Formula

From G. C. Greubel, Nov 08 2018: (Start)
G.f.: (823543 + 403750329*x + 7200703023*x^2 + 22692415945*x^3 + 17136675405*x^4 + 2902898547*x^5 + 62731021*x^6 + 2187*x^7)/(1-x)^8.
E.g.f.: (823543 +409515130*x +4820249700*x^2 +10796835000*x^3 + 7834050000*x^4 +2237900000*x^5 +259000000*x^6 + 10000000*x^7)*exp(x). (End)

A144459 a(n) = (3*n+1)*(5*n+1).

Original entry on oeis.org

1, 24, 77, 160, 273, 416, 589, 792, 1025, 1288, 1581, 1904, 2257, 2640, 3053, 3496, 3969, 4472, 5005, 5568, 6161, 6784, 7437, 8120, 8833, 9576, 10349, 11152, 11985, 12848, 13741, 14664, 15617, 16600, 17613, 18656, 19729, 20832, 21965, 23128, 24321, 25544, 26797, 28080
Offset: 0

Views

Author

Paul Curtz, Oct 08 2008

Keywords

Comments

This appears in a "diagonal" scan through the numerators of the fractions of the hydrogen spectrum: A005563(4), A061037(9), A061039(13), etc.
a(n) mod 9 is a sequence of period length 9: repeat 1, 6, 5, 7, 3, 2, 4, 0, 8 (a permutation of A142069).

Crossrefs

Programs

Formula

a(n) = A016777(n)*A016861(n).
a(n) mod 10 = A131579(n+7).
G.f.: (1+21*x+8*x^2) / (1-x)^3 . - R. J. Mathar, Jul 01 2011
a(0)=1, a(1)=24, a(2)=77, a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Harvey P. Dale, May 02 2015
E.g.f.: (1 + 23*x + 15*x^2)*exp(x). - G. C. Greubel, Sep 20 2018
Sum_{n>=0} 1/a(n) = sqrt(2 + 3/sqrt(5) - sqrt(3 + 6/sqrt(5)))*Pi/(2*sqrt(6)) + sqrt(5)*log(phi)/4 + 5*log(5)/8 - 3*log(3)/4, where phi is the golden ratio (A001622). - Amiram Eldar, Sep 17 2023
Showing 1-4 of 4 results.