cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131763 Series reversion of x*(1-4*x)/(1-x) is x*A(x) where A(x) is the generating function.

Original entry on oeis.org

1, 3, 21, 183, 1785, 18651, 204141, 2310447, 26819121, 317530227, 3819724293, 46553474919, 573608632233, 7133530172619, 89423593269213, 1128765846337887, 14334721079385441, 183021615646831587, 2347944226115977461, 30250309354902101271, 391241497991342192985
Offset: 0

Views

Author

Philippe Deléham, Oct 29 2007, Nov 06 2007

Keywords

Comments

The Hankel transform of this sequence is 12^C(n+1,2).
Number of Dyck n-paths with two colors of up (U,u) and two colors of down (D,d) avoiding UD. - David Scambler, Jun 24 2013
Number of small Schröder n-paths with 3 types of up steps (i.e., lattice paths from (0,0) to (2n,0) using steps U1=U2=U3=(1,1), F=(2,0), D=(1,-1), with no F steps on the x-axis). - Yu Hin Au, Dec 05 2019

Examples

			G.f. = 1 + 3*x + 21*x^2 + 183*x^3 + 1785*x^4 + 18651*x^5 + ... - _Michael Somos_, Jul 27 2022
		

Crossrefs

Cf. for series reversion of x*(1-r*x)/(1-x): A001003 (r=2), A107841 (r=3), this sequence (r=4), A131765 (r=5), A131846 (r=6), A131926 (r=7), A131869 (r=8), A131927 (r=9).

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x*(1-4*x)/(1-x), {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Mar 30 2015 *)
    Table[(-1)^n Hypergeometric2F1[-n, n + 1, 2, 4], {n, 0, 20}] (* Peter Luschny, Jan 08 2018 *)
    a[ n_] := SeriesCoefficient[(1 + x - Sqrt[1 - 14*x + x^2])/(8*x), {x, 0, n}]; (* Michael Somos, Jul 27 2022 *)
    a[ n_] := (-1)^n * Hypergeometric2F1[ -n, n+1, 2, 4]; (* Michael Somos, Mar 15 2024 *)
  • PARI
    Vec(serreverse(x*(1-4*x)/(1-x)+ O(x^30))) \\ Michel Marcus, Mar 30 2015
    
  • PARI
    {a(n) = if(n<0, 0, n++; polcoeff(serreverse(x*(1-4*x)/(1-x) + x*O(x^n)), n))}; /* Michael Somos, Jul 27 2022 */
    
  • PARI
    {a(n) = if(n<0, -a(-1-n), polcoeff(2/(1 + x + sqrt(1 - 14*x + x^2 + x*O(x^n))), n))}; /* Michael Somos, Mar 15 2024 */

Formula

a(n) = Sum_{0<=k<=n} A086810(n,k)*3^k.
a(n) = (3/4)*A103211(n) for n>0.
a(n) = -a(n-1)+4*Sum_{i=0..n-1} a(i)*a(n-i-1), a(0)=1. - Vladimir Kruchinin, Mar 30 2015
D-finite with recurrence: (n+1)*a(n) +7*(-2*n+1)*a(n-1) +(n-2)*a(n-2)=0. - R. J. Mathar, Aug 16 2015
a(n) = (-1)^n*hypergeom([-n, n + 1], [2], 4). - Peter Luschny, Jan 08 2018
G.f.: (1 + x - sqrt(1 - 14*x + x^2))/(8*x). - Michael Somos, Jul 27 2022
From Michael Somos, Mar 15 2024: (Start)
Given g.f. A(x) and y = 2*x*A(-x^2), then y-1/y = (x-1/x)/2.
If a(n) := -a(-1-n) for n<0, then 0 = a(n)*(+a(n+1) -35*a(n+2) +4*a(n+3)) +a(n+1)*(+7*a(n+1) +194*a(n+2) -35*a(n+3)) +a(n+2)*(+7*a(n+2) +a(n+3)) for all n in Z. (End)

Extensions

a(17) corrected by Mark van Hoeij, Jul 01 2010