cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A086810 Triangle obtained by adding a leading diagonal 1,0,0,0,... to A033282.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 5, 5, 0, 1, 9, 21, 14, 0, 1, 14, 56, 84, 42, 0, 1, 20, 120, 300, 330, 132, 0, 1, 27, 225, 825, 1485, 1287, 429, 0, 1, 35, 385, 1925, 5005, 7007, 5005, 1430, 0, 1, 44, 616, 4004, 14014, 28028, 32032, 19448, 4862, 0, 1, 54, 936, 7644, 34398, 91728
Offset: 0

Views

Author

Philippe Deléham, Aug 05 2003

Keywords

Comments

Mirror image of triangle A133336. - Philippe Deléham, Dec 10 2008
From Tom Copeland, Oct 09 2011: (Start)
With polynomials
P(0,t) = 0
P(1,t) = 1
P(2,t) = t
P(3,t) = t + 2 t^2
P(4,t) = t + 5 t^2 + 5 t^3
P(5,t) = t + 9 t^2 + 21 t^3 + 14 t^4
The o.g.f. A(x,t) = {1+x-sqrt[(1-x)^2-4xt]}/[2(1+t)] (see Drake et al.).
B(x,t)= x-t x^2/(1-x)= x-t(x^2+x^3+x^4+...) is the comp. inverse in x.
Let h(x,t) = 1/(dB/dx) = (1-x)^2/(1+(1+t)*x*(x-2)) = 1/(1-t(2x+3x^2+4x^3+...)), an o.g.f. in x for row polynomials in t of A181289. Then P(n,t) is given by (1/n!)(h(x,t)*d/dx)^n x, evaluated at x=0, A = exp(x*h(y,t)*d/dy) y, eval. at y=0, and dA/dx = h(A(x,t),t). These results are a special case of A133437 with u(x,t) = B(x,t), i.e., u_1=1 and (u_n)=-t for n > 1. See A001003 for t = 1. (End)
Let U(x,t) = [A(x,t)-x]/t, then U(x,0) = -dB(x,t)/dt and U satisfies dU/dt = UdU/dx, the inviscid Burgers' equation (Wikipedia), also called the Hopf equation (see Buchstaber et al.). Also U(x,t) = U(A(x,t),0) = U(x+tU,0) since U(x,0) = [x-B(x,t)]/t. - Tom Copeland, Mar 12 2012
Diagonals of A132081 are essentially rows of this sequence. - Tom Copeland, May 08 2012
T(r, s) is the number of [0,r]-covering hierarchies with s segments (see Kreweras). - Michel Marcus, Nov 22 2014
From Yu Hin Au, Dec 07 2019: (Start)
T(n,k) is the number of small Schröder n-paths (lattice paths from (0,0) to (2n,0) using steps U=(1,1), F=(2,0), D=(1,-1) with no F step on the x-axis) that has exactly k U steps.
T(n,k) is the number of Schröder trees (plane rooted tree where each internal node has at least two children) with exactly n+1 leaves and k internal nodes. (End)

Examples

			Triangle starts:
  1;
  0,  1;
  0,  1,  2;
  0,  1,  5,  5;
  0,  1,  9, 21, 14;
  ...
		

Crossrefs

The diagonals (except for A000007) are also the diagonals of A033282.
Row sums: A001003 (Schroeder numbers).

Programs

  • Mathematica
    Table[Boole[n == 2] + If[# == -1, 0, Binomial[n - 3, #] Binomial[n + # - 1, #]/(# + 1)] &[k - 1], {n, 2, 12}, {k, 0, n - 2}] // Flatten (* after Jean-François Alcover at A033282, or *)
    Table[If[n == 0, 1, Binomial[n, k] Binomial[n + k, k - 1]/n], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Aug 22 2016 *)
  • PARI
    t(n, k) = if (n==0, 1, binomial(n, k)*binomial(n+k, k-1)/n);
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(t(n,k), ", ");); print(););} \\ Michel Marcus, Nov 22 2014

Formula

Triangle T(n, k) read by rows; given by [0, 1, 0, 1, 0, 1, ...] DELTA [1, 1, 1, 1, 1, 1, 1, 1, 1, ...] where DELTA is Deléham's operator defined in A084938.
For k>0, T(n, k) = binomial(n-1, k-1)*binomial(n+k, k)/(n+1); T(0, 0) = 1 and T(n, 0) = 0 if n > 0. [corrected by Marko Riedel, May 04 2023]
Sum_{k>=0} T(n, k)*2^k = A107841(n). - Philippe Deléham, May 26 2005
Sum_{k>=0} T(n-k, k) = A005043(n). - Philippe Deléham, May 30 2005
T(n, k) = A108263(n+k, k). - Philippe Deléham, May 30 2005
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A001003(n), A107841(n), A131763(n), A131765(n), A131846(n), A131926(n), A131869(n), A131927(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, respectively. - Philippe Deléham, Nov 05 2007
Sum_{k=0..n} T(n,k)*5^k*(-2)^(n-k) = A152601(n). - Philippe Deléham, Dec 10 2008
Sum_{k=0..n} T(n,k)*(-1)^k*3^(n-k) = A154825(n). - Philippe Deléham, Jan 17 2009
Umbrally, P(n,t) = Lah[n-1,-t*a.]/n! = (1/n)*Sum_{k=1..n-1} binomial(n-2,k-1)a_k t^k/k!, where (a.)^k = a_k = (n-1+k)!/(n-1)!, the rising factorial, and Lah(n,t) = n!*Laguerre(n,-1,t) are the Lah polynomials A008297 related to the Laguerre polynomials of order -1. - Tom Copeland, Oct 04 2014
T(n, k) = binomial(n, k)*binomial(n+k, k-1)/n, for k >= 0; T(0, 0) = 1 (see Kreweras, p. 21). - Michel Marcus, Nov 22 2014
P(n,t) = Lah[n-1,-:Dt:]/n! t^(n-1) with (:Dt:)^k = (d/dt)^k t^k = k! Laguerre(k,0,-:tD:) with (:tD:)^j = t^j D^j. The normalized Laguerre polynomials of 0 order are given in A021009. - Tom Copeland, Aug 22 2016

Extensions

Typo in a(60) corrected by Michael De Vlieger, Nov 21 2019

A107841 Series reversion of x*(1-3*x)/(1-x).

Original entry on oeis.org

1, 2, 10, 62, 430, 3194, 24850, 199910, 1649350, 13879538, 118669210, 1027945934, 9002083870, 79568077034, 708911026210, 6359857112438, 57403123415350, 520895417047010, 4749381474135850, 43489017531266654, 399755692955359630, 3687437532852484442, 34121911117572911410
Offset: 0

Views

Author

Paul Barry, May 24 2005

Keywords

Comments

In general, the series reversion of x(1-r*x)/(1-x) has g.f. (1+x-sqrt(1+2*(1-2*r)*x+x^2))/(2*r) and general term given by a(n)=(1/(n+1))sum{k=0..n, C(n+1,k)C(2n-k,n)(-1)^k*r^(n-k)}; a(n)=(1/(n+1))sum{k=0..n, C(n+1,k+1)C(n+k,k)(-1)^(n-k)*r^k}; a(n)=sum{k=0..n, (1/(k+1))*C(n,k)C(n+k,k)(-1)^(n-k)*r^k}; a(n)=sum{k=0..n, A088617(n,k)*(-1)^(n-k)*r^k}.
The Hankel transform of this sequence is 6^C(n+1,2). - Philippe Deléham, Oct 29 2007
Number of Dyck n-paths with three colors of up (U,a,b) and one color of down (D) avoiding UD. - David Scambler, Jun 24 2013
This sequence is implied in the turbulence solutions of the incompressible Navier-Stokes equations in R^3. a(n) = numbers of realizable vorticity eddies in terms of initial conditions. - Fung Lam, Dec 31 2013
Conjugate sequence to this series is defined by series reversion of x(1+3*x)/(1+x), G.f.: ((x-1)-sqrt(1-10*x+ x^2))/(6*x). Conjugate sequence is the negation of this series except a(0). - Fung Lam, Jan 16 2014
Complete Chebyshev transform is G.f. = 3*F((1-x^2)/(1+x^2)), where F(x) is the g.f. of A107841. Real part of G.f. (= (1 - sqrt(3*x^4-2))/((1+x^2))) generates periodic sequence A056594. In general, for reversion of x*(1-r*x)/(1-x), r>=2, Real part of r*F((1-x^2)/(1+x^2)) (= (1 - sqrt(r*x^4 - r + 1))/(1+x^2)) generates A056594. - Fung Lam, Apr 29 2014
a(n) is the number of small Schröder n-paths with 2 types of up steps (i.e., lattice paths from (0,0) to (2n,0) using steps U1=U2=(1,1), F=(2,0), D=(1,-1), with no F steps on the x-axis). - Yu Hin Au, Dec 07 2019

Crossrefs

Cf. A001003 (r=2), this sequence (r=3), A131763 (r=4), A131765 (r=5), A131846 (r=6), A131926 (r=7), A131869 (r=8), A131927 (r=9).

Programs

  • Maple
    seq(simplify((-1)^n*hypergeom([-n, n + 1], [2], 3)), n=0..10); # Georg Fischer, Sep 14 2024 (from Peter Luschny's formula in A131763, with last parameter r=3)
  • Mathematica
    CoefficientList[Series[(1+x-Sqrt[1-10*x+x^2])/(6*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 17 2012 *)
  • PARI
    x='x+O('x^66); Vec(serreverse(x*(1-3*x)/(1-x))) \\ Joerg Arndt, May 15 2013

Formula

G.f.: (1+x-sqrt(1-10x+x^2))/(6x).
a(n) = (1/(n+1))sum{k=0..n, C(n+1, k)C(2n-k, n)(-1)^k*3^(n-k)}.
a(n) = (1/(n+1))sum{k=0..n, C(n+1, k+1)C(n+k, k)(-1)^(n-k)*3^k}.
a(n) = sum{k=0..n, (1/(k+1))*C(n, k)C(n+k, k)(-1)^(n-k)*3^k}.
a(n) = sum{k=0..n, A088617(n, k)*(-1)^(n-k)*3^k}.
a(n) = Sum_{k>=0} A086810(n, k)*2^k. - Philippe Deléham, May 26 2005
a(n) = (2/3)*A103210(n) for n>0. - Philippe Deléham, Oct 29 2007
G.f.: 1/(1-2x/(1-3x/(1-2x/(1-3x/(1-2x/(1-3x/(1-2x/(1-3x........ (continued fraction). - Paul Barry, Dec 15 2008
From Paul Barry, May 15 2009: (Start)
G.f.: 1/(1-2x/(1-x-2x/(1-x-2x/(1-x-2x/(1-x-2x/(1-... (continued fraction).
G.f.: 1/(1-2x-6x^2/(1-5x-6x^2/(1-5x-6x^2/(1-5x-6x^2/(1-... (continued fraction). (End)
G.f.: 1/(1+x-3x/(1+x-3x/(1+x-3x/(1+x-3x/(1+x-3x/(1+... (continued fraction). - Paul Barry, Mar 18 2011
D-finite with recurrence: (n+1)*a(n) = 5*(2*n-1)*a(n-1) - (n-2)*a(n-2). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ sqrt(12+5*sqrt(6))*(5+2*sqrt(6))^n/(6*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012
a(n+1) is the coefficient of x^(n+1) in 2*sum{j,1,n}((sum{k,1,n}a(k)x^k)^(j+1)), a(1)=1 with offset by 1. - Fung Lam, Dec 31 2013
The series reversion of x*(1 - r*x)/(1 - x) is D-finite with the general recurrence n*a(n) - (2*r-1)*(2*n-3)*a(n-1) + (n-3)*a(n-2) = 0 and with initial values a(1) = 1, a(2) = r-1, a(3) = (2*r-1)*(r-1). This sequence uses r=3, cf. crossrefs. - Georg Fischer, Sep 14 2024

A103211 a(n) = (1/n) * Sum_{i=0..n-1} C(n,i)*C(n,i+1)*3^i*4^(n-i), a(0)=1.

Original entry on oeis.org

1, 4, 28, 244, 2380, 24868, 272188, 3080596, 35758828, 423373636, 5092965724, 62071299892, 764811509644, 9511373563492, 119231457692284, 1505021128450516, 19112961439180588, 244028820862442116, 3130592301487969948, 40333745806536135028, 521655330655122923980
Offset: 0

Views

Author

Ralf Stephan, Jan 27 2005

Keywords

Comments

The Hankel transform of this sequence is 12^C(n+1,2). - Philippe Deléham, Oct 28 2007
The sequence 1, 1, 4, 28, ... has a(n) = 0^n + Sum_{k=0..n-1} C(n+k-1, 2*k)*C(k)*3^k and Hankel transform 3^C(n+1, 2)*4^C(n, 2). - Paul Barry, Dec 09 2008
Number of Dyck n-paths with two colors of up (U,u) and two colors of down (D,d) avoiding DU. - David Scambler, Jun 24 2013

Examples

			G.f. = 1 + 4*x + 28*x^2 + 244*x^3 + 2380*x^4 + 24868*x^5 + ... _Michael Somos_, Mar 15 2024
		

Crossrefs

Fourth column of array A103209.
Cf. A131763.

Programs

  • GAP
    a:=n->(1/n)*Sum([0..n-1],i->Binomial(n,i)*Binomial(n,i+1)*
    3^i*4^(n-i));;
    A103211:=Concatenation([1],List([1..20],n->a(n))); # Muniru A Asiru, Feb 11 2018
  • Magma
    Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((1-x-Sqrt(x^2-14*x+1))/(6*x))) // G. C. Greubel, Feb 10 2018
    
  • Maple
    A103211_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w] := a[w-1] + 3*add(a[j]*a[w-j-1], j=0..w-1) od;
    convert(a, list) end: A103211_list(20); # Peter Luschny, Feb 29 2016
  • Mathematica
    CoefficientList[Series[(1-x-Sqrt[x^2-14*x+1])/(6*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 17 2012 *)
    a[n_] := Sum[(-1)^(n - k) Binomial[n, k] Hypergeometric2F1[k - n, n + 1, k + 2, 4], {k, 0, n}]; Table[a[n], {n, 0, 20}] (* Peter Luschny, Jan 08 2018 *)
    a[ n_] := If[n < 0, a[-1-n], SeriesCoefficient[2/(1 - x + Sqrt[1 - 14*x + x^2]), {x, 0, n}]]; (* Michael Somos, Mar 15 2024 *)
  • PARI
    x='x+O('x^30); Vec((1-x-sqrt(x^2-14*x+1))/(6*x)) \\ G. C. Greubel, Feb 10 2018
    
  • PARI
    {a(n) = if(n<0, a(-1-n), polcoeff(2/(1 - x + sqrt(1 - 14*x + x^2 + x*O(x^n))), n))}; /* Michael Somos, Mar 15 2024 */
    

Formula

G.f.: (1-z-sqrt(z^2-14*z+1))/(6*z).
a(n) = Sum_{k=0..n} C(n+k,2k)*3^k*C(k), C(n) given by A000108. - Paul Barry, May 21 2005
a(n) = Sum_{k=0..n} A060693(n,k)*3^(n-k). - Philippe Deléham, Apr 02 2007
a(0)=1, a(n) = a(n-1) + 3*Sum_{k=0..n-1} a(k)*a(n-1-k). - Philippe Deléham, Oct 23 2007
G.f.: 1/(1-x-3*x/(1-x-3*x/(1-x-3*x/(1-x-3*x/(1-... (continued fraction). - Paul Barry, Nov 07 2009
D-finite with recurrence: (n+1)*a(n) = 7*(2*n-1)*a(n-1) - (n-2)*a(n-2). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ sqrt(24+14*sqrt(3))*(7+4*sqrt(3))^n/(6*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012
a(n) = Sum_{k=0..n} (-1)^(n-k) binomial(n,k)*hypergeom([k - n, n + 1], [k + 2], 4). - Peter Luschny, Jan 08 2018
G.f. A(x) satisfies: A(x) = (1 + 3*x*A(x)^2) / (1 - x). - Ilya Gutkovskiy, Jun 30 2020
From Michael Somos, Mar 15 2024: (Start)
a(n) = (4/3)*A131763(n) for n>0.
Given g.f. A(x) and y = -x*A(-x^2), then 3*y-1/y = x+1/x.
If a(n) := a(-1-n) for n<0, then 0 = a(n)*(+a(n+1) -35*a(n+2) +4*a(n+3)) +a(n+1)*(+7*a(n+1) +194*a(n+2) -35*a(n+3)) +a(n+2)*(+7*a(n+2) +a(n+3)) for all n in Z. (End)

A133336 Triangle T(n,k), 0 <= k <= n, read by rows, given by [1,1,1,1,1,1,1,...] DELTA [0,1,0,1,0,1,0,1,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 5, 5, 1, 0, 14, 21, 9, 1, 0, 42, 84, 56, 14, 1, 0, 132, 330, 300, 120, 20, 1, 0, 429, 1287, 1485, 825, 225, 27, 1, 0, 1430, 5005, 7007, 5005, 1925, 385, 35, 1, 0, 4862, 19448, 32032, 28028, 14014, 4004, 616, 44, 1, 0, 16796, 75582, 143208, 148512, 91728, 34398, 7644, 936, 54, 1, 0
Offset: 0

Views

Author

Philippe Deléham, Oct 19 2007

Keywords

Comments

Mirror image of triangle A086810; another version of A126216.
Equals A131198*A007318 as infinite lower triangular matrices. - Philippe Deléham, Oct 23 2007
Diagonal sums: A119370. - Philippe Deléham, Nov 09 2009

Examples

			Triangle begins:
    1;
    1,    0;
    2,    1,    0;
    5,    5,    1,   0;
   14,   21,    9,   1,   0;
   42,   84,   56,  14,   1,  0;
  132,  330,  300, 120,  20,  1, 0;
  429, 1287, 1485, 825, 225, 27, 1, 0;
		

Crossrefs

Programs

  • Magma
    [[Binomial(n-1,k)*Binomial(2*n-k,n)/(n+1): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Feb 05 2018
  • Mathematica
    Table[Binomial[n-1,k]*Binomial[2*n-k,n]/(n+1), {n,0,10}, {k,0,n}] // Flatten (* G. C. Greubel, Feb 05 2018 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(binomial(n-1,k)*binomial(2*n-k,n)/(n+1), ", "))) \\ G. C. Greubel, Feb 05 2018
    

Formula

Sum_{k=0..n} T(n,k)*x^k = A000108(n), A001003(n), A007564(n), A059231(n), A078009(n), A078018(n), A081178(n), A082147(n), A082181(n), A082148(n), A082173(n) for x = 0,1,2,3,4,5,6,7,8,9,10 respectively.
Sum_{k=0..n} T(n,k)*x^(n-k) = A000007(n), A001003(n), A107841(n), A131763(n), A131765(n), A131846(n), A131926(n), A131869(n), A131927(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively. - Philippe Deléham, Nov 05 2007
Sum_{k=0..n} T(n,k)*(-2)^k*5^(n-k) = A152601(n). - Philippe Deléham, Dec 10 2008
T(n,k) = binomial(n-1,k)*binomial(2n-k,n)/(n+1), k <= n. - Philippe Deléham, Nov 02 2009

A371386 Expansion of (1/x) * Series_Reversion( x * (1-4*x)^2 / (1-x) ).

Original entry on oeis.org

1, 7, 89, 1391, 24209, 450231, 8759337, 176071263, 3627907745, 76217773799, 1626477863801, 35158334302927, 768222871584817, 16940297062253719, 376507441510456905, 8425543117906277055, 189683436162271517505, 4293057440192560395207
Offset: 0

Views

Author

Seiichi Manyama, Mar 20 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serreverse(x*(1-4*x)^2/(1-x))/x)
    
  • PARI
    a(n) = sum(k=0, n, 3^k*binomial(2*n+k+1, k)*binomial(2*n, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} 3^k * binomial(2*n+k+1,k) * binomial(2*n,n-k).

A371387 Expansion of (1/x) * Series_Reversion( x * (1-4*x)^3 / (1-x) ).

Original entry on oeis.org

1, 11, 205, 4647, 116873, 3135635, 87924597, 2545845135, 75534363601, 2284439539035, 70166186106333, 2182759455876663, 68630655620066265, 2177561996773904483, 69632831106680348165, 2241852665024904670239, 72608750028928583936673
Offset: 0

Views

Author

Seiichi Manyama, Mar 20 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serreverse(x*(1-4*x)^3/(1-x))/x)
    
  • PARI
    a(n) = sum(k=0, n, 3^k*binomial(3*n+k+2, k)*binomial(3*n+1, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} 3^k * binomial(3*n+k+2,k) * binomial(3*n+1,n-k).

A304936 a(n) = [x^n] 1/(1 - n*x/(1 - x - n*x/(1 - x - n*x/(1 - x - n*x/(1 - x - n*x/(1 - ...)))))), a continued fraction.

Original entry on oeis.org

1, 1, 10, 183, 5076, 191105, 9140118, 531731935, 36496595656, 2889768574449, 259443165181410, 26054614893427703, 2894791106297891100, 352618782117325104849, 46736101530152250554926, 6696645353339606889836415, 1031600569146491935984293648, 170029083604373881344301895585
Offset: 0

Views

Author

Ilya Gutkovskiy, May 21 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(1 + ContinuedFractionK[-n x, 1 - x, {i, 1, n}]), {x, 0, n}], {n, 0, 17}]
    Table[SeriesCoefficient[2/(1 + x + Sqrt[1 - x (2 + 4 n - x)]), {x, 0, n}], {n, 0, 17}]
    Table[Sum[(-1)^(n - k) (n + 1)^k Binomial[n, k] Binomial[n + k, k]/(k + 1),{k, 0, n}], {n, 0, 17}]
    Table[(-1)^n Hypergeometric2F1[-n, n + 1, 2, n + 1], {n, 0, 17}]

Formula

a(n) = [x^n] 2/(1 + x + sqrt(1 - x*(2 + 4*n - x))).
a(n) = Sum_{k=0..n} (-1)^(n-k)*(n + 1)^k*binomial(n,k)*binomial(n+k,k)/(k + 1).
a(n) ~ exp(1/2) * 2^(2*n) * n^(n - 3/2) / sqrt(Pi). - Vaclav Kotesovec, Jun 08 2019
Showing 1-7 of 7 results.