cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A057567 Number of partitions of n where the product of parts divides n.

Original entry on oeis.org

1, 2, 2, 4, 2, 5, 2, 7, 4, 5, 2, 11, 2, 5, 5, 12, 2, 11, 2, 11, 5, 5, 2, 21, 4, 5, 7, 11, 2, 15, 2, 19, 5, 5, 5, 26, 2, 5, 5, 21, 2, 15, 2, 11, 11, 5, 2, 38, 4, 11, 5, 11, 2, 21, 5, 21, 5, 5, 2, 36, 2, 5, 11, 30, 5, 15, 2, 11, 5, 15, 2, 52, 2, 5, 11, 11, 5, 15, 2, 38, 12, 5, 2, 36, 5, 5, 5, 21
Offset: 1

Views

Author

Leroy Quet, Oct 04 2000

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24=2^3*3 and 375=3*5^3 both have prime signature (3,1). - Christian G. Bower, Jun 03 2005

Examples

			From _Gus Wiseman_, Jul 04 2019: (Start)
The a(1) = 1 through a(9) = 5 partitions are the following. The Heinz numbers of these partitions are given by A326155.
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (11111)  (321)     (1111111)  (4211)
                    (211)            (3111)               (22211)
                    (1111)           (21111)              (41111)
                                     (111111)             (221111)
                                                          (2111111)
                                                          (11111111)
(End)
		

Crossrefs

Any prime numbered column of array A108461.

Programs

  • Mathematica
    Table[Function[m, Count[Map[Times @@ # &, IntegerPartitions[m]], P_ /; Divisible[m, P]] - Boole[n == 1]]@ Apply[Times, #] &@ MapIndexed[Prime[First@ #2]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]], {n, 88}] (* Michael De Vlieger, Aug 16 2017 *)
  • PARI
    fcnt(n, m) = {local(s); s=0; if(n == 1, s=1, fordiv(n, d, if(d > 1 & d <= m, s=s+fcnt(n/d, d)))); s}
    A001055(n) = fcnt(n, n) \\ This function from Michael B. Porter, Oct 29 2009
    A057567(n) = sumdiv(n, d, A001055(d)); \\ After Jovovic's formula. Antti Karttunen, May 25 2017
    
  • Python
    from sympy import divisors, isprime
    def T(n, m):
        if isprime(n): return 1 if n <= m else 0
        A = (d for d in divisors(n) if 1 < d < n and d <= m)
        s = sum(T(n // d, d) for d in A)
        return s + 1 if n <= m else s
    def a001055(n): return T(n, n)
    def a(n): return sum(a001055(d) for d in divisors(n))
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Aug 19 2017

Formula

a(n) = Sum_{d|n} A001055(d). - Vladeta Jovovic, Nov 19 2000
a(A025487(n)) = A108464(n).
a(p^k) = A000070(k).
a(A002110(n)) = A000110(n+1).
Dirichlet g.f.: zeta(s) * Product_{k>=2} 1/(1 - 1/k^s). - Ilya Gutkovskiy, Nov 03 2020

Extensions

More terms from James Sellers, Oct 09 2000
More terms from Vladeta Jovovic, Nov 19 2000

A130839 Sequence related to factorizations and prime signatures: a(1) = 1; for n>1,a(n) = A108464(n) - 2*A050322(n).

Original entry on oeis.org

1, 0, 0, 1, 1, 3, 2, 7, 5, 5, 8, 14, 14, 8, 20, 26, 32, 15, 40, 40, 45, 22, 47, 65, 23, 77, 94, 75, 63, 98, 122, 37, 135, 196, 120, 148, 188, 117, 216, 55, 226, 231, 187, 206, 377, 187, 310, 338, 286, 366, 83, 483, 375, 99, 454, 405, 683, 284, 598
Offset: 1

Views

Author

Alford Arnold, Jul 19 2007

Keywords

Crossrefs

A131997 Array read by rows in which the n-th row contains odd numbers of all possible prime signatures with n divisors.

Original entry on oeis.org

1, 3, 9, 27, 15, 81, 243, 45, 729, 2187, 135, 105, 6561, 225, 19683, 405, 59049, 177147, 1215, 315, 675
Offset: 1

Views

Author

Alford Arnold, Aug 18 2007

Keywords

Examples

			Row 12 of A131886 is 2048 96 72 60 so here row 12 is 177147 1215 315 675.
		

Crossrefs

Showing 1-3 of 3 results.