cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 71 results. Next

A108464 a(n) = A057567(A025487(n)).

Original entry on oeis.org

1, 2, 4, 5, 7, 11, 12, 21, 15, 19, 26, 38, 36, 30, 52, 64, 74, 45, 98, 92, 105, 52, 109, 141, 67, 171, 198, 165, 135, 212, 250, 97, 289, 392, 254, 296, 382, 249, 426, 139, 444, 467, 371, 424, 719, 381, 592, 662, 560, 696, 195, 907, 737, 203, 850, 783, 1261, 562, 1098
Offset: 1

Views

Author

Christian G. Bower, Jun 03 2005

Keywords

Comments

Number of partitions of n where product of parts divides n by prime signature.

Crossrefs

Extensions

Offset corrected by Amiram Eldar, Jul 23 2024

A131802 Sequence related to factorizations and prime signatures: a(1) = 1; for n>1, a(n) = A057567(n) - 2*A001055(n).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 3, 0, 1, 1, 2, 0, 3, 0, 3, 1, 1, 0, 7, 0, 1, 1, 3, 0, 5, 0, 5, 1, 1, 1, 8, 0, 1, 1, 7, 0, 5, 0, 3, 3, 1, 0, 14, 0, 3, 1, 3, 0, 7, 1, 7, 1, 1, 0, 14, 0, 1, 3, 8, 1, 5, 0, 3, 1, 5, 0, 20, 0, 1, 3, 3, 1, 5, 0, 14, 2, 1, 0, 14, 1, 1, 1, 7
Offset: 1

Views

Author

Alford Arnold, Jul 18 2007

Keywords

Examples

			A001055(12) = 4 and A057567(12) = 11 so a(12) = 11 - 2*4 = 3
		

Crossrefs

Programs

A001055 The multiplicative partition function: number of ways of factoring n with all factors greater than 1 (a(1) = 1 by convention).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, 1, 4, 1, 4, 2, 2, 1, 7, 2, 2, 3, 4, 1, 5, 1, 7, 2, 2, 2, 9, 1, 2, 2, 7, 1, 5, 1, 4, 4, 2, 1, 12, 2, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 11, 1, 2, 4, 11, 2, 5, 1, 4, 2, 5, 1, 16, 1, 2, 4, 4, 2, 5, 1, 12, 5, 2, 1, 11, 2, 2, 2, 7, 1, 11, 2, 4, 2, 2, 2, 19, 1, 4, 4, 9, 1, 5, 1
Offset: 1

Views

Author

Keywords

Comments

From David W. Wilson, Feb 28 2009: (Start)
By a factorization of n we mean a multiset of integers > 1 whose product is n.
For example, 6 is the product of 2 such multisets, {2, 3} and {6}, so a(6) = 2.
Similarly 8 is the product of 3 such multisets, {2, 2, 2}, {2, 4} and {8}, so a(8) = 3.
1 is the product of 1 such multiset, namely the empty multiset {}, whose product is by definition the multiplicative identity 1. Hence a(1) = 1. (End)
a(n) = # { k | A064553(k) = n }. - Reinhard Zumkeller, Sep 21 2001; Benoit Cloitre and N. J. A. Sloane, May 15 2002
Number of members of A025487 with n divisors. - Matthew Vandermast, Jul 12 2004
See sequence A162247 for a list of the factorizations of n and a program for generating the factorizations for any n. - T. D. Noe, Jun 28 2009
So a(n) gives the number of different prime signatures that can be found among the integers that have n divisors. - Michel Marcus, Nov 11 2015
For n > 0, also the number of integer partitions of n with product n, ranked by A301987. For example, the a(12) = 4 partitions are: (12), (6,2,1,1,1,1), (4,3,1,1,1,1,1), (3,2,2,1,1,1,1,1). See also A380218. In general, A379666(m,n) = a(n) for any m >= n. - Gus Wiseman, Feb 07 2025

Examples

			1: 1, a(1) = 1
2: 2, a(2) = 1
3: 3, a(3) = 1
4: 4 = 2*2, a(4) = 2
6: 6 = 2*3, a(6) = 2
8: 8 = 2*4 = 2*2*2, a(8) = 3
etc.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 292-295.
  • Amarnath Murthy and Charles Ashbacher, Generalized Partitions and Some New Ideas on Number Theory and Smarandache Sequences, Hexis, Phoenix; USA 2005. See Section 1.4.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge University Press, 1995, p. 198, exercise 9 (in the third edition 2015, p. 296, exercise 211).

Crossrefs

A045782 gives the range of a(n).
For records see A033833, A033834.
Row sums of A316439 (for n>1).
Cf. A096276 (partial sums).
The additive version is A000041 (integer partitions), strict A000009.
Row sums of A318950.
A002865 counts partitions into parts > 1.
A069016 counts distinct sums of factorizations.
A319000 counts partitions by product and sum, row sums A319916.
A379666 (transpose A380959) counts partitions by sum and product, without 1's A379668, strict A379671.

Programs

  • Haskell
    a001055 = (map last a066032_tabl !!) . (subtract 1)
    -- Reinhard Zumkeller, Oct 01 2012
    
  • Java
    public class MultiPart {
        public static void main(String[] argV) {
            for (int i=1;i<=100;++i) System.out.println(1+getDivisors(2,i));
        }
        public static int getDivisors(int min,int n) {
            int total = 0;
            for (int i=min;i=i) { ++total; if (n/i>i) total+=getDivisors(i,n/i); }
            return total;
        }
    } \\ Scott R. Shannon, Aug 21 2019
  • Maple
    with(numtheory):
    T := proc(n::integer, m::integer)
            local A, summe, d:
            if isprime(n) then
                    if n <= m then
                            return 1;
                    end if:
                    return 0 ;
            end if:
            A := divisors(n) minus {n, 1}:
            for d in A do
                    if d > m then
                            A := A minus {d}:
                    end if:
            end do:
            summe := add(T(n/d,d),d=A) ;
            if n <=m then
                    summe := summe + 1:
            end if:
            summe ;
    end proc:
    A001055 := n -> T(n, n):
    [seq(A001055(n), n=1..100)]; # Reinhard Zumkeller and Ulrich Schimke (ulrschimke(AT)aol.com)
  • Mathematica
    c[1, r_] := c[1, r]=1; c[n_, r_] := c[n, r] = Module[{ds, i}, ds = Select[Divisors[n], 1 < # <= r &]; Sum[c[n/ds[[i]], ds[[i]]], {i, 1, Length[ds]}]]; a[n_] := c[n, n]; a/@Range[100] (* c[n, r] is the number of factorizations of n with factors <= r. - Dean Hickerson, Oct 28 2002 *)
    T[, 1] = T[1, ] = 1;
    T[n_, m_] := T[n, m] = DivisorSum[n, Boole[1 < # <= m] * T[n/#, #]&];
    a[n_] := T[n, n];
    a /@ Range[100] (* Jean-François Alcover, Jan 03 2020 *)
  • PARI
    /* factorizations of n with factors <= m (n,m positive integers) */
    fcnt(n,m) = {local(s);s=0;if(n == 1,s=1,fordiv(n,d,if(d > 1 & d <= m,s=s+fcnt(n/d,d))));s}
    A001055(n) = fcnt(n,n) \\ Michael B. Porter, Oct 29 2009
    
  • PARI
    \\ code using Dirichlet g.f., based on Somos's code for A007896
    {a(n) = my(A, v, w, m);
    if(
    n<1, 0,
    \\ define unit vector v = [1, 0, 0, ...] of length n
    v = vector(n, k, k==1);
    for(k=2, n,
    m = #digits(n, k) - 1;
    \\ expand 1/(1-x)^k out far enough
    A = (1 - x)^ -1 + x * O(x^m);
    \\ w = zero vector of length n
    w = vector(n);
    \\ convert A to a vector
    for(i=0, m, w[k^i] = polcoeff(A, i));
    \\ build the answer
    v = dirmul(v, w)
    );
    v[n]
    )
    };
    \\ produce the sequence
    vector(100,n,a(n)) \\ N. J. A. Sloane, May 26 2014
    
  • PARI
    v=vector(100, k, k==1); for(n=2, #v, v+=dirmul(v, vector(#v, k, (k>1) && n^valuation(k,n)==k)) ); v \\ Max Alekseyev, Jul 16 2014
    
  • Python
    from sympy import divisors, isprime
    def T(n, m):
        if isprime(n): return 1 if n<=m else 0
        A=filter(lambda d: d<=m, divisors(n)[1:-1])
        s=sum(T(n//d, d) for d in A)
        return s + 1 if n<=m else s
    def a(n): return T(n, n)
    print([a(n) for n in range(1, 106)]) # Indranil Ghosh, Aug 19 2017
    

Formula

The asymptotic behavior of this sequence was studied by Canfield, Erdős & Pomerance and Luca, Mukhopadhyay, & Srinivas. - Jonathan Vos Post, Jul 07 2008
Dirichlet g.f.: Product_{k>=2} 1/(1 - 1/k^s).
If n = p^k for a prime p, a(n) = partitions(k) = A000041(k).
Since the sequence a(n) is the right diagonal of A066032, the given recursive formula for A066032 applies (see Maple program). - Reinhard Zumkeller and Ulrich Schimke (ulrschimke(AT)aol.com)
a(A002110(n)) = A000110(n).
a(p^k*q^k) = A002774(k) if p and q are distinct primes. - R. J. Mathar, Jun 06 2024
a(n) = A028422(n) + 1. - Gus Wiseman, Feb 07 2025

Extensions

Incorrect assertion about asymptotic behavior deleted by N. J. A. Sloane, Jun 08 2009

A057568 Number of partitions of n where n divides the product of the parts.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 6, 5, 5, 1, 22, 1, 11, 23, 80, 1, 113, 1, 150, 85, 45, 1, 737, 226, 84, 809, 726, 1, 1787, 1, 4261, 735, 260, 1925, 9567, 1, 437, 1877, 16402, 1, 14630, 1, 9861, 33057, 1152, 1, 102082, 19393, 57330, 10159, 30706, 1, 207706, 47927, 200652
Offset: 1

Views

Author

Leroy Quet, Oct 04 2000

Keywords

Examples

			From _Gus Wiseman_, Jul 04 2019: (Start)
The a(1) = 1 through a(9) = 5 partitions are the following. The Heinz numbers of these partitions are given by A326149.
  (1)  (2)  (3)  (4)   (5)  (6)    (7)  (8)      (9)
                 (22)       (321)       (44)     (63)
                                        (422)    (333)
                                        (2222)   (3321)
                                        (4211)   (33111)
                                        (22211)
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0,
          `if`(t=1, 1, 0), `if`(i<1, 0, b(n, i-1, t)+
          `if`(i>n, 0, b(n-i, min(i, n-i), t/igcd(i, t)))))
        end:
    a:= n-> `if`(isprime(n), 1, b(n$3)):
    seq(a(n), n=1..70);  # Alois P. Heinz, Dec 20 2017
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Divisible[Times@@#,n]&]],{n,20}] (* Gus Wiseman, Jul 04 2019 *)
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t == 1, 1, 0], If[i < 1, 0, b[n, i - 1, t] + If[i > n, 0, b[n - i, Min[i, n - i], t/GCD[i, t]]]]];
    a[n_] := If[PrimeQ[n], 1, b[n, n, n]];
    Array[a, 70] (* Jean-François Alcover, May 21 2021, after Alois P. Heinz *)
  • Scheme
    ;; This is a naive algorithm that scans over all partitions of each n. For fold_over_partitions_of see A000793.
    (define (A057568 n) (let ((z (list 0))) (fold_over_partitions_of n 1 * (lambda (partprod) (if (zero? (modulo partprod n)) (set-car! z (+ 1 (car z)))))) (car z)))
    ;; Antti Karttunen, Dec 20 2017

Extensions

More terms from James Sellers, Oct 09 2000

A326149 Numbers whose product of prime indices is divisible by their sum of prime indices.

Original entry on oeis.org

2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 29, 30, 31, 37, 41, 43, 47, 49, 53, 59, 61, 63, 65, 67, 71, 73, 79, 81, 83, 84, 89, 97, 101, 103, 107, 108, 109, 113, 125, 127, 131, 137, 139, 149, 150, 151, 154, 157, 163, 165, 167, 169, 173, 179, 181, 190, 191, 193, 197
Offset: 1

Views

Author

Gus Wiseman, Jun 09 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose product of parts is divisible by their sum of parts. The enumeration of these partitions by sum is given by A057568.

Examples

			The sequence of terms together with their prime indices begins:
    2: {1}
    3: {2}
    5: {3}
    7: {4}
    9: {2,2}
   11: {5}
   13: {6}
   17: {7}
   19: {8}
   23: {9}
   29: {10}
   30: {1,2,3}
   31: {11}
   37: {12}
   41: {13}
   43: {14}
   47: {15}
   49: {4,4}
   53: {16}
   59: {17}
		

Crossrefs

Satisfies A056239(a(n))|A003963(a(n)).
The nonprime case is A326150, with squarefree case A326158.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[2,100],Divisible[Times@@primeMS[#],Plus@@primeMS[#]]&]

A326155 Positive integers whose sum of prime indices is divisible by their product of prime indices.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 23, 29, 30, 31, 32, 37, 40, 41, 43, 47, 48, 53, 59, 61, 64, 67, 71, 73, 79, 83, 84, 89, 97, 101, 103, 107, 108, 109, 112, 113, 127, 128, 131, 137, 139, 144, 149, 151, 157, 163, 167, 173, 179, 181, 191, 192, 193
Offset: 1

Views

Author

Gus Wiseman, Jun 10 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of the integer partitions counted by A057567. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   7: {4}
   8: {1,1,1}
   9: {2,2}
  11: {5}
  12: {1,1,2}
  13: {6}
  16: {1,1,1,1}
  17: {7}
  19: {8}
  23: {9}
  29: {10}
  30: {1,2,3}
  31: {11}
  32: {1,1,1,1,1}
  37: {12}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Divisible[Plus@@primeMS[#],Times@@primeMS[#]]&]

A379721 Numbers whose prime indices have sum <= product.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 30, 31, 33, 35, 37, 39, 41, 42, 43, 45, 47, 49, 50, 51, 53, 54, 55, 57, 59, 61, 63, 65, 66, 67, 69, 70, 71, 73, 75, 77, 78, 79, 81, 83, 84, 85, 87, 89, 90, 91, 93, 95, 97, 98, 99, 100, 101, 102, 103
Offset: 1

Views

Author

Gus Wiseman, Jan 05 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Partitions of this type are counted by A319005.
The complement is A325038.

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    3: {2}
    5: {3}
    7: {4}
    9: {2,2}
   11: {5}
   13: {6}
   15: {2,3}
   17: {7}
   19: {8}
   21: {2,4}
   23: {9}
   25: {3,3}
   27: {2,2,2}
   29: {10}
   30: {1,2,3}
		

Crossrefs

The case of equality is A301987, inequality A325037.
Nonpositive positions in A325036.
A000040 lists the primes, differences A001223.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A379681 gives sum plus product of prime indices, firsts A379682.
Counting and ranking multisets by comparing sum and product:
- same: A001055 (strict A045778), ranks A301987
- divisible: A057567, ranks A326155
- divisor: A057568, ranks A326149, see A326156, A326172, A379733
- greater: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less: A114324, ranks A325037, see A318029
- less or equal: A319005, ranks A379721 (this)
- different: A379736, ranks A379722, see A111133

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Total[prix[#]]<=Times@@prix[#]&]

Formula

Number k such that A056239(k) <= A003963(k).

A379722 Numbers whose prime indices do not have the same sum as product.

Original entry on oeis.org

1, 4, 6, 8, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93
Offset: 1

Views

Author

Gus Wiseman, Jan 08 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Partitions of this type are counted by A379736.
The complement is A301987, counted by A001055.

Examples

			The terms together with their prime indices begin:
    1: {}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
   10: {1,3}
   12: {1,1,2}
   14: {1,4}
   15: {2,3}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   21: {2,4}
   22: {1,5}
   24: {1,1,1,2}
   25: {3,3}
   26: {1,6}
   27: {2,2,2}
   28: {1,1,4}
   32: {1,1,1,1,1}
		

Crossrefs

Nonzeros of A325036.
A000040 lists the primes, differences A001223.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A324851 finds numbers > 1 divisible by the sum of their prime indices.
A379666 counts partitions by sum and product, without 1's A379668.
A379681 gives sum plus product of prime indices, firsts A379682.
Counting and ranking multisets by comparing sum and product:
- same: A001055 (strict A045778), ranks A301987
- divisible: A057567, ranks A326155
- divisor: A057568, ranks A326149, see A379733
- greater: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less: A114324, ranks A325037, see A318029
- less or equal: A319005, ranks A379721
- different: A379736, ranks A379722 (this)

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Times@@prix[#]!=Total[prix[#]]&]

A379733 Number of strict integer partitions of n whose product of parts is a multiple of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 5, 1, 5, 7, 7, 1, 12, 1, 20, 15, 11, 1, 48, 12, 16, 33, 61, 1, 121, 1, 105, 67, 34, 126, 292, 1, 49, 128, 471, 1, 522, 1, 387, 751, 96, 1, 1556, 246, 792, 422, 869, 1, 2126, 1191, 2904, 726, 240, 1, 6393, 1, 321, 5460, 6711
Offset: 1

Views

Author

Gus Wiseman, Jan 07 2025

Keywords

Comments

Partitions of this type are ranked by the squarefree terms of A326149.

Examples

			The a(n) partitions for n = 1, 6, 10, 12, 15, 18:
  (1)  (6)      (10)     (12)       (15)         (18)
       (3,2,1)  (5,3,2)  (5,4,3)    (6,5,4)      (12,6)
                (5,4,1)  (6,4,2)    (7,5,3)      (9,5,4)
                         (8,3,1)    (9,5,1)      (9,6,3)
                         (6,3,2,1)  (10,3,2)     (9,7,2)
                                    (6,5,3,1)    (9,8,1)
                                    (5,4,3,2,1)  (6,5,4,3)
                                                 (7,6,3,2)
                                                 (8,6,3,1)
                                                 (9,4,3,2)
                                                 (9,6,2,1)
                                                 (12,3,2,1)
		

Crossrefs

The non-strict opposite version is A057567, ranks A326155.
The non-strict version is A057568, ranks A326149.
The case of partitions without 1's is A379735, non-strict A379734.
A319005 counts partitions with product >= sum, ranks A379721.
A114324 counts partitions with product greater than sum, ranks A325037.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(i*(i+1)/2 `if`(isprime(n), 1, b(n$3)):
    seq(a(n), n=1..70);  # Alois P. Heinz, Jan 07 2025
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Divisible[Times@@#,n]&]],{n,30}]

A326152 Number of integer partitions of n whose product of parts is 2 * n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 2, 0, 5, 0, 2, 3, 5, 0, 7, 0, 5, 3, 2, 0, 10, 2, 2, 5, 5, 0, 9, 0, 9, 3, 2, 3, 14, 0, 2, 3, 10, 0, 9, 0, 5, 9, 2, 0, 17, 2, 7, 3, 5, 0, 14, 3, 10, 3, 2, 0, 19, 0, 2, 9, 13, 3, 9, 0, 5, 3, 9, 0, 27, 0, 2, 9, 5, 3, 9, 0, 17, 10, 2, 0
Offset: 0

Views

Author

Gus Wiseman, Jun 09 2019

Keywords

Comments

Also the number of orderless factorizations of 2 * n into factors > 1 with sum at most n.
The Heinz numbers of these partitions are given by A326151.

Examples

			The a(8) = 3 through a(16) = 5 partitions (empty columns not shown) (A = 10):
  (44)    (63)    (541)   (831)      (74111)   (A311)      (841111)
  (422)   (3321)  (5221)  (6411)     (722111)  (651111)    (8221111)
  (2222)                  (62211)              (53211111)  (442111111)
                          (432111)                         (4222111111)
                          (3222111)                        (22222111111)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Times@@#==2*n&]],{n,0,30}]
Showing 1-10 of 71 results. Next