A130126 Number of partitions of n in which each even part has odd multiplicity.
1, 1, 2, 3, 4, 6, 10, 13, 17, 24, 33, 43, 58, 75, 98, 127, 161, 205, 262, 328, 414, 517, 641, 794, 982, 1205, 1475, 1803, 2197, 2664, 3230, 3896, 4693, 5640, 6754, 8077, 9647, 11479, 13637, 16178, 19152, 22624, 26695, 31426, 36948, 43372, 50819, 59463, 69490
Offset: 0
Examples
a(5) = 6 because we have 5, 41, 32, 311, 2111 and 11111 (221 does not qualify).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A131942.
Programs
-
Maple
g:=product((1+q^(2*n)-q^(4*n))/((1-q^(2*n-1))*(1-q^(4*n))),n=1..50): gser:= series(g,q=0,45): seq(coeff(gser,q,n),n=0..42); # Emeric Deutsch, Aug 24 2007 # second Maple program: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+ add(`if`(irem(i, 2)=0 and irem(j, 2)=0, 0, b(n-i*j, i-1)), j=1..n/i))) end: a:= n-> b(n, n): seq(a(n), n=0..50); # Alois P. Heinz, Feb 27 2013
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + Sum[If[Mod[i, 2] == 0 && Mod[j, 2] == 0, 0, b[n - i*j, i - 1]], {j, 1, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *) nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k) - x^(4*k))/((1-x^(2*k-1)) * (1-x^(4*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 03 2016 *)
Formula
G.f.: Product_{n>=1} (1+q^(2n)-q^(4n))/((1-q^(2n-1))(1-q^(4n))).
a(n) ~ sqrt(Pi^2/2 + 4*log(phi)^2) * exp(sqrt((Pi^2 + 8*log(phi)^2)*(n/2))) / (4*Pi*n), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jan 03 2016
Extensions
More terms from Emeric Deutsch, Aug 24 2007
Comments