cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131991 a(n) = 1 + prime(n) + prime(n)^2 + prime(n)^3.

Original entry on oeis.org

15, 40, 156, 400, 1464, 2380, 5220, 7240, 12720, 25260, 30784, 52060, 70644, 81400, 106080, 151740, 208920, 230764, 305320, 363024, 394420, 499360, 578760, 712980, 922180, 1040604, 1103440, 1236600, 1307020, 1455780, 2064640, 2265384
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 06 2007

Keywords

Comments

Number of points and lines for the prime(n)-Cremona-Richmond configuration. - Carlos Segovia Gonzalez, Jul 30 2020

Examples

			a(4)=400 because the 4th prime is 7, 7^3=343, 7^2=49, and 343+49+7+1=400.
		

Crossrefs

Cf. A000040, A000203. - Zak Seidov, Feb 13 2016

Programs

  • Magma
    [1+NthPrime(n)+NthPrime(n)^2+NthPrime(n)^3: n in [1..40]]; // Vincenzo Librandi, Dec 27 2010
  • Maple
    A131991:= n -> map (p -> p^(3)+p^(2)+p+1, ithprime(n)):
    seq (A131991(n), n=1..32); # Jani Melik, Jan 25 2011
  • Mathematica
    #^3 + #^2 + # + 1 &/@Prime[Range[100]] (* Vincenzo Librandi, Mar 20 2014 *)

Formula

a(n) = 1 + A060800(n)*A000040(n).
a(n) = (A030514(n) - 1)/A006093(n).
a(n) = A000203(A000040(n)^3). - Zak Seidov, Feb 13 2016