A131991 a(n) = 1 + prime(n) + prime(n)^2 + prime(n)^3.
15, 40, 156, 400, 1464, 2380, 5220, 7240, 12720, 25260, 30784, 52060, 70644, 81400, 106080, 151740, 208920, 230764, 305320, 363024, 394420, 499360, 578760, 712980, 922180, 1040604, 1103440, 1236600, 1307020, 1455780, 2064640, 2265384
Offset: 1
Examples
a(4)=400 because the 4th prime is 7, 7^3=343, 7^2=49, and 343+49+7+1=400.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- C. Segovia and M. Winklmeier, Calculating the dimension of the universal embedding of the symplectic dual polar space using languages, arXiv:1312.4315 [math.CO], 2013-2019.
- C. Segovia and M. Winklmeier, Calculating the dimension of the universal embedding of the symplectic dual polar space using languages, The Elec. Jour. of Comb. 27(4) (2020), P4.39.
Programs
-
Magma
[1+NthPrime(n)+NthPrime(n)^2+NthPrime(n)^3: n in [1..40]]; // Vincenzo Librandi, Dec 27 2010
-
Maple
A131991:= n -> map (p -> p^(3)+p^(2)+p+1, ithprime(n)): seq (A131991(n), n=1..32); # Jani Melik, Jan 25 2011
-
Mathematica
#^3 + #^2 + # + 1 &/@Prime[Range[100]] (* Vincenzo Librandi, Mar 20 2014 *)
Comments