A132116 Continued fraction expansion of Pi/sqrt(3).
1, 1, 4, 2, 1, 2, 3, 7, 3, 3, 30, 2, 1, 2, 2, 83, 9, 20, 1, 37, 1, 2, 7, 1, 1, 2, 1, 6, 1, 2, 1, 1, 3, 3, 1, 4, 8, 1, 6, 33, 1, 1, 1, 17, 4, 1, 3, 1, 5, 3, 2, 1, 1100, 2, 31, 6, 7, 1, 1, 9, 6, 3, 1, 2, 2, 2, 1, 2, 4, 6, 16, 1, 1, 8, 1, 13, 2, 18, 1, 4, 1, 46, 2, 5, 1, 3, 1, 42, 1, 1, 1, 26, 3, 2, 1, 5, 4
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..9999
- Jean Dolbeault, Ari Laptev and Michael Loss, Lieb-Thirring inequalities with improved constants, arXiv:0708.1165 [math.AP], 2007.
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:= RealField(); ContinuedFraction(Pi(R)/Sqrt(3)); // G. C. Greubel, Sep 27 2018
-
Maple
with(numtheory): cfrac(Pi/(sqrt(3)),100,'quotients'); # Muniru A Asiru, Sep 28 2018
-
Mathematica
ContinuedFraction[Pi/Sqrt[3], 100] (* G. C. Greubel, Sep 27 2018 *)
-
PARI
default(realprecision, 100); contfrac(Pi/sqrt(3)) \\ G. C. Greubel, Sep 27 2018
Extensions
Offset changed by Andrew Howroyd, Aug 09 2024
Comments