A132338 Decimal expansion of 1 - 1/phi.
3, 8, 1, 9, 6, 6, 0, 1, 1, 2, 5, 0, 1, 0, 5, 1, 5, 1, 7, 9, 5, 4, 1, 3, 1, 6, 5, 6, 3, 4, 3, 6, 1, 8, 8, 2, 2, 7, 9, 6, 9, 0, 8, 2, 0, 1, 9, 4, 2, 3, 7, 1, 3, 7, 8, 6, 4, 5, 5, 1, 3, 7, 7, 2, 9, 4, 7, 3, 9, 5, 3, 7, 1, 8, 1, 0, 9, 7, 5, 5, 0, 2, 9, 2, 7, 9, 2, 7, 9, 5, 8, 1, 0, 6, 0, 8, 8, 6, 2, 5, 1, 5, 2, 4
Offset: 0
Examples
0.38196601125010515179541316563436188...
References
- F. Aubonnet, D. Guinin and A. Ravelli, Oral, Concours d'entrée des Grandes Ecoles Scientifiques, Exercices résolus, "Crus" 1982-83, Bréal, 1983, Exercice 210, 40-42.
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- R. André-Jeannin, Lambert series and the summation of reciprocals in certain Fibonacci-Lucas-Type sequences, Fib. Quart. 28 (1990) 223-226.
- Yiyan Ni, Myron Hlynka, and Percy H. Brill, Urn Models and Fibonacci Series, arXiv:1806.09150 [math.CO], 2018. See (9) p. 7.
- Index entries for algebraic numbers, degree 2
Programs
-
Mathematica
RealDigits[N[1/GoldenRatio^2,200]] (* Vladimir Joseph Stephan Orlovsky, May 27 2010 *) RealDigits[1-1/GoldenRatio,10,120][[1]] (* Harvey P. Dale, Mar 30 2024 *)
-
PARI
(3-sqrt(5))/2 \\ Michel Marcus, Oct 26 2020
Formula
Equals 1 - 1/phi = 2 - phi, with phi from A001622.
Equals (5-sqrt(5))^2/20 = 1/phi^2 = 1/A104457. - Joost Gielen, Sep 28 2013 [corrected by Joerg Arndt, Sep 29 2013]
Equals (3-sqrt(5))/2. - Bernard Schott, May 12 2019
Equals Sum_{k >= 2} (-1)^k/(Fibonacci(k)*Fibonacci(k+1)). See Ni et al. - Michel Marcus, Jun 26 2018
Comments