cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132338 Decimal expansion of 1 - 1/phi.

Original entry on oeis.org

3, 8, 1, 9, 6, 6, 0, 1, 1, 2, 5, 0, 1, 0, 5, 1, 5, 1, 7, 9, 5, 4, 1, 3, 1, 6, 5, 6, 3, 4, 3, 6, 1, 8, 8, 2, 2, 7, 9, 6, 9, 0, 8, 2, 0, 1, 9, 4, 2, 3, 7, 1, 3, 7, 8, 6, 4, 5, 5, 1, 3, 7, 7, 2, 9, 4, 7, 3, 9, 5, 3, 7, 1, 8, 1, 0, 9, 7, 5, 5, 0, 2, 9, 2, 7, 9, 2, 7, 9, 5, 8, 1, 0, 6, 0, 8, 8, 6, 2, 5, 1, 5, 2, 4
Offset: 0

Views

Author

N. J. A. Sloane, Nov 07 2007

Keywords

Comments

Density of 1's in Fibonacci word A003849.
Also decimal expansion of Sum_{n>=1} ((-1)^(n+1))*1/phi^n. - Michel Lagneau, Dec 04 2011
The Lambert series evaluated at this point is 0.8828541617125076... [see André-Jeannin]. - R. J. Mathar, Oct 28 2012
Because this equals 2 - phi, this is an integer in the quadratic number field Q(sqrt(5)). (Note that this is also sqrt(5 - 3*phi).) - Wolfdieter Lang, Jan 08 2018
When m >= 1, the equation m*x^m + (m-1)*x^(m-1) + ... + 2*x^2 + x - 1 = 0 has only one positive root, u(m) (say); then lim_{m->oo} u(m) = (3-sqrt(5))/2 (see Aubonnet). - Bernard Schott, May 12 2019
Cosine of the zenith angle at which a string should be cut so that a ball tied to one of its ends, set moving without friction around a vertical circle with the minimum speed in a uniform gravitational field, will then travel through the fixed center of the circle. - Stefano Spezia, Oct 25 2020
Algebraic number of degree 2 with minimal polynomial x^2 - 3*x + 1. The other root is 1 + phi = A104457. - Wolfdieter Lang, Aug 29 2022

Examples

			0.38196601125010515179541316563436188...
		

References

  • F. Aubonnet, D. Guinin and A. Ravelli, Oral, Concours d'entrée des Grandes Ecoles Scientifiques, Exercices résolus, "Crus" 1982-83, Bréal, 1983, Exercice 210, 40-42.

Crossrefs

Programs

Formula

Equals 1 - 1/phi = 2 - phi, with phi from A001622.
Equals A094874 - 1, or A079585 - 2, or the square of A094214.
Equals (5-sqrt(5))^2/20 = 1/phi^2 = 1/A104457. - Joost Gielen, Sep 28 2013 [corrected by Joerg Arndt, Sep 29 2013]
Equals (3-sqrt(5))/2. - Bernard Schott, May 12 2019
Equals Sum_{k >= 2} (-1)^k/(Fibonacci(k)*Fibonacci(k+1)). See Ni et al. - Michel Marcus, Jun 26 2018