A132585 Numbers k such that sigma(k)-k-1 divides sigma(k+1)-k-2, where sigma(k) is sum of positive divisors of k and the ratio is greater than zero.
25, 49, 799, 899, 32399, 292681, 1492995736325809
Offset: 1
Examples
k=25 -> sigma(25)= 1+5+25 -> sigma(k)-k-1=5 k+1=26 -> sigma(26)= 1+2+13+26 -> sigma(k+1)-k-2=2+13=15 15/5 = 3 (integer > 0)
Programs
-
Maple
with(numtheory); P:=proc(n) local a,i; for i from 1 by 1 to n do if sigma(i)-i-1>0 then a:=(sigma(i+1)-i-2)/(sigma(i)-i-1); if a>0 and trunc(a)=a then print(i); fi; fi; od; end: P(100000);
Extensions
a(6) from Donovan Johnson, Aug 31 2008
a(7) by Jud McCranie, Jul 26 2025
Comments