cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A217737 a(n) = Fibonacci(n) mod n*(n+1).

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 51, 167, 130, 171, 67, 190, 1, 45, 320, 1, 505, 168, 275, 649, 614, 319, 59, 620, 125, 837, 376, 407, 485, 1296, 1331, 419, 466, 1435, 1231, 1420, 1289, 1653, 830, 2069, 2161, 1344, 1849, 1975, 746, 1167, 1589, 872, 2645, 2205
Offset: 1

Views

Author

Alex Ratushnyak, Mar 22 2013

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) local r, M, p, m; r, M, p, m:=
          <<1|0>, <0|1>>, <<0|1>, <1|1>>, n, n*(n+1);
          do if irem(p, 2, 'p')=1 then r:= r.M mod m fi;
             if p=0 then break fi; M:= M.M mod m
          od; r[1, 2]
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Nov 26 2016
  • Mathematica
    Table[Mod[Fibonacci[n],n(n+1)],{n,60}] (* Harvey P. Dale, Oct 02 2017 *)
  • PARI
    a(n)=fibonacci(n)%(n*(n+1)) \\ Charles R Greathouse IV, Jun 23 2017
  • Python
    prpr, prev = 0, 1
    for i in range(1, 333):
        cur = prpr + prev
        print(str(prev % (i*(i+1))), end=', ')
        prpr, prev = prev, cur
    

Formula

A000045(n) modulo A002378(n).

A202278 Right-truncatable Fibonacci numbers: every prefix is Fibonacci number.

Original entry on oeis.org

0, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2011

Keywords

Comments

This sequence is finite with 11 terms.
n such that both n and floor(n/10) are Fibonacci numbers. - Eric M. Schmidt, Feb 18 2013
First 11 terms of A096275, A132634, A132636. Also 11 consecutive terms in A024595, A025109. - Omar E. Pol, Feb 19 2013

Crossrefs

Cf. A000045 (Fibonacci numbers).

A224824 Smallest m such that Fibonacci(m) >= m^n.

Original entry on oeis.org

5, 12, 21, 30, 41, 51, 62, 73, 85, 97, 109, 122, 134, 147, 160, 174, 187, 200, 214, 228, 242, 256, 270, 284, 298, 312, 327, 342, 356, 371, 386, 401, 416, 431, 446, 461, 476, 491, 507, 522, 538, 553, 569, 585, 600, 616, 632, 648, 664, 680
Offset: 1

Views

Author

Michel Marcus, Jul 21 2013

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[{5,Table[Ceiling[(n*LambertW[-1,-Log[GoldenRatio]/(n*5^(1/(2*n)))])/-Log[GoldenRatio]],{n,2,50}]}] (* Vaclav Kotesovec, Jul 24 2013 *)
  • PARI
    a(n) = {my(ok = 0, m = 2); until (ok, if (fibonacci(m) >= m^n, ok = 1, m++); ); return (m); } \\ Michel Marcus, Jul 21 2013; corrected Jun 13 2022
Showing 1-3 of 3 results.