A132794 Numbers n such that sigma(phi(n)) -phi(n) -1 = phi(sigma(n) -n -1).
8, 16, 64, 256, 16384, 262144, 1048576, 4294967296
Offset: 1
Links
- Jon Maiga, Euler Phi, Chowla and Mersenne primes, 2018.
Programs
-
GAP
Filtered([4..1000000],n->Sigma(Phi(n))-Phi(n)-1=Phi(Sigma(n)-n-1)); # Muniru A Asiru, Dec 16 2018
-
Magma
[n: n in [2..30000] | DivisorSigma(1,n) ne n+1 and DivisorSigma(1, EulerPhi(n)) - EulerPhi(n) - 1 eq EulerPhi(DivisorSigma(1,n) - n -1) ]; // G. C. Greubel, Dec 13 2018
-
Maple
with(numtheory); P:=proc(n) local a,i; for i from 1 to n do a:=phi(sigma(i)-i-1); if a>0 then if sigma(phi(i))-phi(i)-1=a then print(i); fi; fi; od; end: P(10^7);
-
Mathematica
ch[n_]:=DivisorSigma[1,n]-n-1 test[n_]:=ch[n]!=0 && ch[EulerPhi[n]] == EulerPhi[ch[n]] Flatten[Position[Range[300000], Integer_ ? test]] (* Jon Maiga, Dec 14 2018 *)
-
PARI
isok(n) = ((s=(sigma(n)-n-1)) != 0) && (sigma(eulerphi(n))-eulerphi(n)-1 == eulerphi(s)); \\ Michel Marcus, Nov 01 2014
Extensions
a(1) corrected and a(6)-a(7) from Michel Marcus, Nov 01 2014
a(8) from Giovanni Resta, Dec 01 2019
Comments