cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A133081 An interpolation operator, companion to A133080.

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Sep 09 2007

Keywords

Comments

A133081 * [1,2,3,...] = A133090: (1, 1, 5, 3, 9, 5, 13, 7, 17, ...).
A133080: diagonal and subdiagonal are switched.

Examples

			First few rows of the triangle:
  1;
  1, 0;
  0, 1, 1;
  0, 0, 1, 0;
  0, 0, 0, 1, 1;
  ...
		

Crossrefs

Cf. A133080, A133090, A040001 (row sums).

Programs

  • PARI
    row(n) = vector(n, k, if (k==n-1, 1, if (k==n, n%2)));
    lista(nn) = my(list=List()); for (n=1, nn, my(v=row(n)); for (k=1, #v, listput(list, v[k]))); Vec(list); \\ Michel Marcus, Mar 06 2022

Formula

Infinite lower triangular matrix, (1,0,1,0,...) in the main diagonal and (1,1,1,...) in the subdiagonal.

Extensions

More terms from Michel Marcus, Mar 06 2022

A309805 Maximum number of nonattacking kings placeable on a hexagonal board with edge-length n in Glinski's hexagonal chess.

Original entry on oeis.org

1, 2, 7, 10, 19, 24, 37, 44, 61, 70, 91, 102, 127, 140, 169, 184, 217, 234, 271, 290, 331, 352, 397, 420, 469, 494, 547, 574, 631, 660, 721, 752, 817, 850, 919, 954, 1027, 1064, 1141, 1180, 1261, 1302, 1387, 1430, 1519, 1564, 1657, 1704, 1801, 1850, 1951, 2002
Offset: 1

Views

Author

Sangeet Paul, Aug 17 2019

Keywords

Examples

			a(1) = 1
.
  o
.
a(2) = 2
.
   . .
  o . o
   . .
.
a(3) = 7
.
    o . o
   . . . .
  o . o . o
   . . . .
    o . o
.
a(4) = 10
.
     . . . .
    o . o . o
   . . . . . .
  o . o . o . o
   . . . . . .
    o . o . o
     . . . .
.
		

Crossrefs

Partial sums of A133090.

Programs

  • Mathematica
    nn:=51; CoefficientList[Series[- (1 + x + 3*x^2 + x^3)/((- 1 + x)^3*(1 + x)^2),{x, 0, nn}], x] (* Georg Fischer, May 10 2020 *)
  • PARI
    a(n) = n^2 - (n\2) - (n\2)^2; \\ Andrew Howroyd, Aug 17 2019
    
  • Python
    def A309805(n): return n**2-(m:=n>>1)*(m+1) # Chai Wah Wu, Apr 04 2024

Formula

a(n) = n^2 - floor(n/2) - floor(n/2)^2.
From Stefano Spezia, Aug 18 2019 (Start)
G.f.: - (1 + x + 3*x^2 + x^3)/((- 1 + x)^3*(1 + x)^2).
E.g.f.: (1/8)*exp(-x)*(-1 + 2*x + exp(2*x)*(1 + 4*x + 6*x^2)).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 5.
a(n) = (1/16)*(3 + (-1)^(1+2*n) - 4*n + 12*n^2 - 2*(-1)^n*(1 + 2*n)).
a(2*n-1) = A003215(n).
a(2*n) = A049450(n).
(End)

A009661 Smallest number m such that m^m+1 is divisible by n.

Original entry on oeis.org

0, 0, 5, 3, 2, 5, 3, 7, 17, 9, 21, 11, 6, 3, 29, 15, 24, 17, 27, 19, 41, 21, 11, 23, 18, 25, 53, 3, 14, 29, 15, 31, 35, 33, 69, 35, 6, 27, 77, 39, 25, 41, 63, 35, 89, 11, 23, 47, 97, 49, 101, 51, 26, 53, 109, 55, 113, 35, 117, 59, 30, 15, 125, 63, 18, 35, 99, 67, 11, 69, 35, 71, 9, 27
Offset: 1

Views

Author

Keywords

Comments

If n is odd, then a(n) <= 2*n - 1. If n is even, then a(n) <= n - 1. - Thomas Ordowski, Dec 03 2023

Crossrefs

Programs

  • PARI
    a(n) = my(m=0); while ((1+Mod(m, n)^m) != 0, m++); m; \\ Michel Marcus, Dec 03 2023
Showing 1-3 of 3 results.