cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A133138 Triangle T(n,k) of the coefficients of the polynomials Q(n,x)=(1+x)[(1+x)^(n-1)+x^(n-1)], Q(0,x)=2.

Original entry on oeis.org

2, 2, 2, 1, 3, 2, 1, 3, 4, 2, 1, 4, 6, 5, 2, 1, 5, 10, 10, 6, 2, 1, 6, 15, 20, 15, 7, 2, 1, 7, 21, 35, 35, 21, 8, 2, 1, 8, 28, 56, 70, 56, 28, 9, 2, 1, 9, 36, 84, 126, 126, 84, 36, 10, 2, 1, 10, 45, 120, 210, 252, 210, 120, 45, 11, 2
Offset: 0

Views

Author

Paul Curtz, Sep 21 2007

Keywords

Examples

			Triangle T(n,k) begins:
n/k 0   1   2    3    4    5    6    7    8    9  10  11  12
0:  2
1:  2   2
2:  1   3   2
3:  1   3   4    2
4:  1   4   6    5    2
5:  1   5  10   10    6    2
6:  1   6  15   20   15    7    2
7:  1   7  21   35   35   21    8    2
8:  1   8  28   56   70   56   28    9    2
9:  1   9  36   84  126  126   84   36   10    2
10: 1  10  45  120  210  252  210  120   45   11   2
11: 1  11  55  165  330  462  462  330  165   55  12   2
12: 1  12  66  220  495  792  924  792  495  220  66  13   2
... - _Franck Maminirina Ramaharo_, May 18 2018
		

Crossrefs

Cf. A133135.

Programs

  • Mathematica
    q[n_] := (1+x)*((1+x)^(n-1) + x^(n-1)); t[n_, k_] := Coefficient[q[n], x, k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 16 2013 *)
  • Maxima
    Q(n, x) := (1 + x)*((1 + x)^(n - 1) + x^(n - 1))$
    t(n,k) := ratcoef(expand(Q(n, x)), x, k)$
    for n:0 thru 20 do print(makelist(t(n, k), k, 0, n)); /* Franck Maminirina Ramaharo, May 18 2018 */

Formula

From R. J. Mathar, Jun 12 2008: (Start)
T(n,k) = A007318(n,k), 0 <= k < n-1.
T(n,k) = A007318(n,k)+1, n-1 <= k <= n.
Sum_{k=0..n} T(n,k) = A133140(n). (End)
T(n,k) = A007318(n,k) + A097806(n,k). - Franck Maminirina Ramaharo, May 18 2018

Extensions

Edited by R. J. Mathar, Jun 12 2008

A283070 Sierpinski tetrahedron or tetrix numbers: a(n) = 2*4^n + 2.

Original entry on oeis.org

4, 10, 34, 130, 514, 2050, 8194, 32770, 131074, 524290, 2097154, 8388610, 33554434, 134217730, 536870914, 2147483650, 8589934594, 34359738370, 137438953474, 549755813890, 2199023255554, 8796093022210, 35184372088834, 140737488355330, 562949953421314
Offset: 0

Views

Author

Peter M. Chema, Feb 28 2017

Keywords

Comments

Number of vertices required to make a Sierpinski tetrahedron or tetrix of side length 2^n. The sum of the vertices (balls) plus line segments (rods) of one tetrix equals the vertices of its larger, adjacent iteration. See formula.
Equivalently, the number of vertices in the (n+1)-Sierpinski tetrahedron graph. - Eric W. Weisstein, Aug 17 2017
Also the independence number of the (n+2)-Sierpinski tetrahedron graph. - Eric W. Weisstein, Aug 29 2021
Final digit alternates 4 and 0.

Crossrefs

Subsequence of A016957.
First bisection of A052548, A087288; second bisection of A049332, A133140, A135440.
Cf. A002023 (edge count).

Programs

Formula

G.f.: 2*(2 - 5*x)/((1 - x)*(1 - 4*x)).
a(n) = 5*a(n-1) - 4*a(n-2) for n > 1.
a(n+1) = a(n) + A002023(n).
a(n) = 2*A052539(n) = A188161(n) - 1 = A087289(n) + 1 = A056469(2*n+2) = A261723(4*n+1).
E.g.f.: 2*(exp(4*x) + exp(x)). - G. C. Greubel, Aug 17 2017

Extensions

Entry revised by Editors of OEIS, Mar 01 2017

A134351 Binomial transform of [1, 5, -1, 5, -1, 5, ...]. Inverse binomial transform of A134350.

Original entry on oeis.org

1, 6, 10, 18, 34, 66, 130, 258, 514, 1026, 2050, 4098, 8194, 16386, 32770, 65538, 131074, 262146, 524290, 1048578, 2097154, 4194306, 8388610, 16777218, 33554434, 67108866, 134217730, 268435458, 536870914, 1073741826, 2147483650
Offset: 1

Views

Author

Gary W. Adamson, Oct 21 2007

Keywords

Examples

			a(4) = 18 = (1, 3, 3, 1) dot (1, 5, -1, 5) = (1 + 15 - 3 + 5).
		

Crossrefs

Cf. A134350.
Essentially the same as A133140, A089985, A052548.

Programs

Formula

a(n) = 2 + 2^(n+1) for n >= 2; a(1)=1. - Emeric Deutsch, Oct 24 2007
O.g.f.: (-1-3*x+6*x^2)/((1-x)*(-1+2*x)). - R. J. Mathar, Apr 02 2008

Extensions

More terms from Emeric Deutsch, Oct 24 2007
More terms from R. J. Mathar, Apr 02 2008
Showing 1-3 of 3 results.