A133145 Period 4: repeat [1, 2, 4, 8].
1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,1).
Crossrefs
Cf. A069705. [Jaume Oliver Lafont, Mar 27 2009]
Programs
-
Magma
&cat [[1, 2, 4, 8]^^30]; // Wesley Ivan Hurt, Jul 09 2016
-
Maple
seq(op([1, 2, 4, 8]), n=0..50); # Wesley Ivan Hurt, Jul 09 2016
-
Mathematica
PadRight[{}, 100, {1, 2, 4, 8}] (* Wesley Ivan Hurt, Jul 09 2016 *) Table[First@ IntegerDigits[2^n, 16], {n, 0, 120}] (* Michael De Vlieger, Jul 09 2016 *)
-
PARI
a(n)=2^(n%4) \\ Jaume Oliver Lafont, Mar 27 2009
-
Sage
[power_mod(2,n,15) for n in range(0,80)] # Zerinvary Lajos, Nov 03 2009
Formula
a(n) == 2*a(n-1) mod 15.
a(n) = 2^(n mod 4). - Jaume Oliver Lafont, Mar 27 2009
a(n) = 2^n (mod 15). G.f.: (1+2*x)*(4*x^2+1)/ ((1-x)*(1+x)*(x^2+1)). [R. J. Mathar, Apr 13 2010]
From Wesley Ivan Hurt, Jul 09 2016: (Start)
a(n) = a(n-4) for n>3.
a(n) = (15-6*cos(n*Pi/2)-5*cos(n*Pi)-12*sin(n*Pi/2)-5*I*sin(n*Pi))/4. (End)