cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A133217 Indices of decagonal numbers (A001107) that are also triangular (A000217).

Original entry on oeis.org

0, 1, 2, 20, 55, 667, 1856, 22646, 63037, 769285, 2141390, 26133032, 72744211, 887753791, 2471161772, 30157495850, 83946756025, 1024467105097, 2851718543066, 34801724077436, 96874483708207, 1182234151527715, 3290880727535960, 40161159427864862
Offset: 1

Views

Author

Richard Choulet, Oct 11 2007; Ant King, Nov 04 2011

Keywords

Comments

For n>0, a(n) = (A055979(n) - A056161(n))/2, with those two sequences related through the Diophantine equation 2x^2 + 3x + 2 = r^2. - Richard R. Forberg, Nov 24 2013

Examples

			The third number which is both decagonal (A001107) and triangular (A000217) is A133216(3)=10. As this is the second decagonal number, we have a(3) = 2.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 34, -34, -1, 1} , {0, 1, 2, 20, 55, 667}, 24] (* first term 0 corrected by Georg Fischer, Apr 02 2019 *)

Formula

For n>5, a(n) = 34*a(n-2) - a(n-4) - 12.
For n>6, a(n) = a(n-1) + 34*a(n-2) - 34*a(n-3) - a(n-4) + a(n-5).
For n>1, a(n) = 1/16 * ((2*sqrt(2) + (-1)^n)*(1 + sqrt(2))^(2*n - 3) - (2*sqrt(2) - (-1)^n)*(1 - sqrt(2))^(2*n - 3) + 6).
For n>1, a(n) = ceiling (1/16*(2*sqrt(2) + (-1)^n)*(1 + sqrt(2))^(2*n - 3)).
G.f.: ( 1 - 33*x^2 + 18*x^3 + 2*x^4 ) / ((1 - x ) * (1 - 6*x + x^2 ) * (1 + 6*x + x^2)).
lim (n -> Infinity, a(2n+1)/a(2n)) = 1/7*(43 + 30*sqrt(2)).
lim (n -> Infinity, a(2n)/a(2n-1)) = 1/7*(11 + 6*sqrt(2)).

Extensions

Entry revised by Max Alekseyev, Nov 06 2011

A133218 Indices of triangular numbers (A000217) that are also decagonal (A001107).

Original entry on oeis.org

0, 1, 4, 55, 154, 1885, 5248, 64051, 178294, 2175865, 6056764, 73915375, 205751698, 2510946901, 6989500984, 85298279275, 237437281774, 2897630548465, 8065878079348, 98434140368551, 274002417416074, 3343863141982285, 9308016314067184, 113592912687029155
Offset: 1

Views

Author

Richard Choulet, Oct 11 2007; Ant King, Nov 04 2011

Keywords

Examples

			The third number which is both triangular (A000217) and decagonal (A001107) is A133216(3)=10. Since this is the fourth triangular number, we have a(3) = 4.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 34, -34, -1, 1 }, {0, 1, 4, 55, 154, 1885}, 24 ]

Formula

For n>5, a(n) = 34*a(n-2) - a(n-4) + 16.
For n>6, a(n) = a(n-1) + 34*a(n-2) - 34*a(n-3) - a(n-4) + a(n-5).
For n>1, a(n) = 1/8 * ((4 + sqrt(2)*(-1)^n)*(1+sqrt(2))^(2*n - 3) + (4 - sqrt(2)*(-1)^n)*(1-sqrt(2))^(2*n-3) - 4).
a(n) = floor(1/8 * (4 + sqrt(2)*(-1)^n)* (1+sqrt(2))^(2*n-3)).
G.f.: x^2*(2*x^4+3*x^3-17*x^2-3*x-1)/((x-1)*(x^2+6*x+1)*(x^2-6*x+1)).
lim (n -> Infinity, a(2n+1)/a(2n)) = 1/7*(43 + 30*sqrt(2)).
lim (n -> Infinity, a(2n)/a(2n-1)) = 1/7*(11 + 6*sqrt(2)).

Extensions

Entry revised by Max Alekseyev, Nov 06 2011
Showing 1-2 of 2 results.