A133297 a(n) = n!*Sum_{k=1..n} (-1)^(k+1)*n^(n-k-1)/(n-k)!.
0, 1, 1, 5, 34, 329, 4056, 60997, 1082320, 22137201, 512801920, 13269953861, 379400765184, 11877265764025, 404067857880064, 14843708906336325, 585606019079612416, 24693567694861202273, 1108343071153648926720, 52757597474618636748421, 2654611611461360017408000
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
Programs
-
GAP
a:= function(n) if n=0 then return 0; else return Factorial(n)*Sum([1..n], k-> (-1)^(k+1)*n^(n-k-1)/Factorial(n-k)); fi; end; List([0..25], n-> a(n) ); # G. C. Greubel, Aug 02 2019
-
Magma
a:= func< n | n eq 0 select 0 else Factorial(n)*(&+[(-1)^(k+1)*n^(n-k-1)/Factorial(n-k): k in [1..n]]) >; [a(n): n in [0..25]]; // G. C. Greubel, Aug 02 2019
-
Mathematica
Table[n!*Sum[(-1)^(k+1)*n^(n-k-1)/(n-k)!, {k,n}], {n,0,25}] (* Stefan Steinerberger, Oct 19 2007 *) With[{m=25}, CoefficientList[Series[Log[1-LambertW[-x]], {x,0,m}], x]*Range[0,m]!] (* G. C. Greubel, Aug 02 2019 *)
-
PARI
my(x='x+O('x^25)); concat([0], Vec(serlaplace( log(1-lambertw(-x)) ))) \\ G. C. Greubel, Aug 02 2019
-
SageMath
def a(n): if (n==0): return 0 else: return factorial(n)*sum((-1)^(k+1)*n^(n-k-1)/factorial(n-k) for k in (1..n)) [a(n) for n in (0..25)] # G. C. Greubel, Aug 02 2019
Formula
E.g.f.: log(1-LambertW(-x)).
a(n) ~ n^(n-1)/2. - Vaclav Kotesovec, Sep 25 2013
Conjecture: a(n) = (n-1)!*( Sum_{k >= 0} (-1)^k * n^(n+k)/(n+k)! - (-1/e)^n ) for n >= 1. Cf. A000435. - Peter Bala, Jul 23 2021
From Thomas Scheuerle, Nov 17 2023: (Start)
This conjecture is true. Let "gamma" be the lower incomplete gamma function: gamma(n, x) = (n-1)! (1 - exp(-x)*Sum_{k = 0..n-1} x^k/k! ), then we can get the upper incomplete gamma function Gamma(n, x) = gamma(n, oo) - gamma(n, x). By inserting according the formula below, we will obtain the formula from Peter Bala.
a(n) = (-1)^(n+1)*Gamma(n, -n)/exp(n) = (-1)^(n+1)*A292977(n-1, n), for n > 0, where Gamma is the upper incomplete gamma function. (End)
Extensions
More terms from Stefan Steinerberger, Oct 19 2007