cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A178792 Dot product of the rows of triangle A046899 with vector (1,2,4,8,...) (= A000079).

Original entry on oeis.org

1, 5, 31, 209, 1471, 10625, 78079, 580865, 4361215, 32978945, 250806271, 1916280833, 14698053631, 113104519169, 872801042431, 6751535300609, 52337071357951, 406468580343809, 3162019821780991, 24634626678980609, 192179216026959871
Offset: 0

Views

Author

Joseph Abate, Jun 15 2010

Keywords

Comments

Hankel transform is A133460.

Examples

			a(3) = (1,4,10,20)dot(1,2,4,8) = 209.
		

Crossrefs

Row sums of A091811.

Programs

  • Maple
    a := n -> binomial(2*n+2,n+1)*hypergeom([-n, n + 1], [n + 2], -1)/2:
    seq(simplify(a(n)), n=0..20); # Peter Luschny, Feb 21 2017
  • Mathematica
    CoefficientList[Series[(3-Sqrt[1-8*x])/(2*(1+x)*Sqrt[1-8*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
    Table[Sum[2^k*Binomial[n + k, k], {k, 0, n}], {n, 0, 20}] (* Michael De Vlieger, Oct 28 2016 *)
    a[n_] := (-1)^(n + 1) - 2^(n + 1) (2n + 1) Binomial[2n, n] Hypergeometric2F1[1, 2n + 2, n + 2, 2]/(n + 1); Array[a, 22, 0] (* Robert G. Wilson v, Jul 21 2018 *)

Formula

a(n) = Sum_{k = 0..n} A046899(n,k)*2^k = Sum_{k = 0..n} 2^k * binomial(n+k,k).
G.f.: (1/3)*(4/sqrt(1 - 8*x) - 1/(1 - x*c(2*x))) with c(x) the g.f. of the Catalan numbers A000108.
a(n) = (1/3)*(4*2^n*A000984(n) - A064062(n)).
a(n) + a(n+1) = 6*2^n*A001700(n).
O.g.f.: (3 - sqrt(1 - 8*x))/(2*(1 + x)*sqrt(1 - 8*x)). - Peter Bala, Apr 10 2012
a(n) = 2^n *binomial(2+2*n,1+n)*2F1(1, 2+2*n; 2+n;-1). - Olivier Gérard, Aug 19 2012
D-finite with recurrence n*a(n) = (7*n - 4)*a(n-1) + 4*(2*n - 1)*a(n-2). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 2^(3n+2)/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 20 2012
a(n) = Sum_{k = 0..n} binomial(k+n,n) * binomial(2*n+1,n-k). - Vladimir Kruchinin, Oct 28 2016
a(n) = 1/2*(n + 1)*binomial(2*n+2,n+1)*Sum_{k = 0..n} binomial(n,k)/(n + k + 1). - Peter Bala, Feb 21 2017
a(n) = binomial(2*n+2,n+1)*hypergeom([-n, n+1], [n+2], -1)/2. - Peter Luschny, Feb 21 2017
a(n) = (-1)^(n+1) - 2^(n+1)*(2*n+1)*binomial(2*n,n)*hypergeom([1, 2*n+2], [n+2], 2)/(n+1). - John M. Campbell, Jul 14 2018
From Akiva Weinberger, Dec 06 2024: (Start)
a(n) = (2*n + 1)!/(n!^2) * Integral_{t=0..1} (t + t^2)^n dt.
a(n) = (Integral_{t=0..1} (t + t^2)^n dt) / (Integral_{t=0..1} (t - t^2)^n dt). (End)
a(n) = (-1)^n * Sum_{k=0..n} binomial(2*n+1,k) * (-2)^k. - André M. Timpanaro, Dec 15 2024
From Seiichi Manyama, Aug 04 2025: (Start)
a(n) = [x^n] (1+x)^(2*n+1)/(1-x)^(n+1).
a(n) = [x^n] 1/((1-x) * (1-2*x)^(n+1)). (End)

A089022 Number of walks of length 2n on the 3-regular tree beginning and ending at some fixed vertex.

Original entry on oeis.org

1, 3, 15, 87, 543, 3543, 23823, 163719, 1143999, 8099511, 57959535, 418441191, 3043608351, 22280372247, 164008329423, 1213166815047, 9012417249663, 67208553680247, 502920171632943, 3775020828459687, 28415858155984863, 214444848602732247, 1622146752543427983
Offset: 0

Views

Author

Paul Boddington, Nov 11 2003

Keywords

Comments

The generating function for the corresponding sequence for the m-regular tree is 2*(m-1)/(m-2+m*sqrt(1-4*(m-1)*x)). When m=2 this reduces to the usual generating function for the central binomial coefficients.
Hankel transform is A133460. - Philippe Deléham, Dec 01 2007

Examples

			a(2) = 15 because there are 3*3=9 walks whose second step is to return to the starting vertex and 3*2=6 walks whose second step is to move away from the starting vertex.
		

Crossrefs

Column k=3 of A183135.

Programs

  • Maple
    A000602 := x -> 2^x*binomial(2*x, x)-9^x+1/3*2^x*binomial(2*x, x) * hypergeom([1, 2*x+1], [x+1], 2/3); # Tobias Friedrich (tfried(AT)mpi-inf.mpg.de), Jun 12 2007
  • Mathematica
    Table[2^n*Binomial[2*n,n]-3^(n-1)*Sum[(2/3)^k*Binomial[n+k,n],{k,0,n-1}],{n,0,20}] (* or *)
    CoefficientList[Series[4/(1+3*Sqrt[1-8*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 17 2012 *)
  • PARI
    my(x='x+O('x^30)); Vec(4/(1+3*sqrt(1-8*x))) \\ Joerg Arndt, May 10 2013

Formula

G.f.: 4/(1+3*sqrt(1-8*x)).
a(n) = 2^n * binomial(2*n,n) - 3^(n-1) * Sum_{j=0..n-1} (2/3)^j*binomial(n+j,n). - Tobias Friedrich (tfried(AT)mpi-inf.mpg.de), Jun 12 2007
a(n) = Sum_{k=0..n} A039599(n,k)*2^(n-k). - Philippe Deléham, Aug 25 2007
From Paul Barry, Sep 04 2009: (Start)
G.f.: 1/(1-3x/(1-2x/(1-2x/(1-2x/(1-2x/(1-... (continued fraction);
G.f.: (1-2*x*c(x))/(1-3*x-2*x*c(x)), where c(x) is the g.f. of A000108. (End)
a(n) = A126087(2n). - Philippe Deléham, Nov 02 2011
D-finite with recurrence n*a(n) + (12-17*n)*a(n-1) + 36*(2n-3)*a(n-2) = 0. - R. J. Mathar, Nov 14 2011
a(n) ~ 6*8^n/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012
From Karol A. Penson, Sep 06 2014: (Start)
a(n) is the (2*n)-th moment of a positive function W(x) = (3/Pi)*sqrt(8-x^2)/(9-x^2), on the segment x = (0,2*sqrt(2)): a(n) = Integral_{x=0..2*sqrt(2)} x^(2*n)*W(x) dx;
a(n) is the special value of hypergeometric function 2F1, in Maple notation: a(n)=2*8^n*GAMMA(n+1/2)*hypergeom([1,n+1/2],[n+2],8/9)/(3*sqrt(Pi)*(n+1)!). (End)
a(n) = A151374(n)*hypergeom([1,n+1/2],[n+2],8/9)*(2/3). - Peter Luschny, Sep 06 2014
Showing 1-2 of 2 results.