cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A133473 2 followed by numbers with n-1 3's before 5.

Original entry on oeis.org

2, 5, 35, 335, 3335, 33335, 333335, 3333335, 33333335, 333333335, 3333333335, 33333333335, 333333333335, 3333333333335, 33333333333335, 333333333333335, 3333333333333335, 33333333333333335, 333333333333333335, 3333333333333333335, 33333333333333333335, 333333333333333333335
Offset: 0

Views

Author

Paul Curtz, Nov 29 2007

Keywords

Comments

Sum of digits: A016789; sum of digits mod 9: A131598.

Crossrefs

Programs

  • Magma
    [(1/3)*(5+10^n): n in [0..20]]; // Vincenzo Librandi, Aug 10 2011
  • Mathematica
    NestList[10#-15&,2,20] (* or *) LinearRecurrence[{11,-10},{2,5},20] (* Harvey P. Dale, Mar 09 2022 *)

Formula

From R. J. Mathar, Nov 30 2007: (Start)
O.g.f.: -(-2+17*x)/((-1+x)*(-1+10*x)).
a(n) = 10*a(n-1) - 15. (End)
E.g.f.: exp(x)*(5 + exp(9*x))/3. - Stefano Spezia, Sep 11 2022
From Elmo R. Oliveira, Jun 13 2025: (Start)
a(n) = 11*a(n-1) - 10*a(n-2).
a(n) = A133472(n)/3. (End)

A384094 Numbers whose square has digit sum 9 and no trailing zero.

Original entry on oeis.org

3, 6, 9, 12, 15, 18, 21, 39, 45, 48, 51, 102, 105, 111, 201, 249, 318, 321, 348, 351, 501, 549, 1002, 1005, 1011, 1101, 1149, 1761, 2001, 4899, 5001, 10002, 10005, 10011, 10101, 10149, 11001, 14499, 20001, 50001, 100002, 100005, 100011, 100101, 101001, 110001, 200001, 375501, 500001, 1000002
Offset: 1

Views

Author

M. F. Hasler, Jun 15 2025

Keywords

Comments

All numbers of the form 10^a + 10^b + 1 (i.e., A052216+1 = 3*A237424) and of the form 10^a + 5*10^b with min(a, b) = 0 (i.e., A133472 U A199685), are in this sequence. Terms not of this form are (9, 18, 39, 45, 48, 249, 318, 321, 348, 351, 549, 1149, 1761, 4899, 10149, 14499, 375501, ...), see subsequence A384095. (Is this sequence finite? What is the next term?)
Is it true that no number > 1049 = A215614(6) has a square with digit sum less than 9, other than the trivial 1 and 4?

Crossrefs

Cf. A004159 (sum of digits of n^2), A215614 (sumdigits(n^2) = 7), A133472 (10^n + 5), A199685 (5*10^n + 1), A052216 (10^a + 10^b), A237424 ((10^a + 10^b + 1)/3).
See also: A058414 (digits(n^2) in {0,1,4}).

Programs

  • PARI
    select( {is_A384094(n)=n%10 && sumdigits(n^2)==9}, [1..10^5])

A384095 Numbers other than {10^a + 10^b + 1} and {10^a + 5*10^b, min(a, b) = 0} whose square has digit sum 9 and no trailing zero.

Original entry on oeis.org

9, 18, 39, 45, 48, 249, 318, 321, 348, 351, 549, 1149, 1761, 4899, 10149, 14499, 375501
Offset: 1

Views

Author

M. F. Hasler, Jun 15 2025

Keywords

Comments

The definition excludes the two "regular" subsequences of A384094, namely A052216+1 = 3*A237424 and A133472 U A199685, which provide most of its terms.
Is it true that no number > 1049 = A215614(6) has a square with digit sum less than 9, other than the trivial 1 and 4?
The next term, if it exists, is a(18) > 10^8.
a(18) > 10^14 if it exists. - Robert Israel, Jun 15 2025
a(18) > 10^40 if it exists. - Chai Wah Wu, Jun 19 2025

Crossrefs

Cf. A004159 (sum of digits of n^2), A384094 (sumdigits(n^2) = 9), A133472 (10^n+5), A199685 (5*10^n + 1), A052216 (10^a+10^b), A237424 ((10^a+10^b+1)/3).
See also: A215614 (sumdigits(n^2) = 7), A058414 (digits(n²) ⊂ {0,1,4}).

Programs

  • Maple
    extend:= proc(a,d) local i,s;
        s:= convert(convert(a,base,10),`+`);
        op(select(t -> numtheory:-quadres(t,10^d)=1, [seq(i*10^(d-1)+a, i=0 .. 9 - s)]))
    end proc:
    istriv:= proc(n) local L;
       L:= subs(0=NULL,convert(n,base,10));
       member(L, [[4],[5],[6],[1,1],[1,1,1],[1,2],[2,1],[1,5],[5,1]])
    end proc:
    R:= NULL:
    A:= [1,4,5,6,9]:
    for d from 2 to 20 do
      A:= map(extend,A,d);
      V:= select(t -> t > 10^(d-1) and issqr(t) and convert(convert(t,base,10),`+`)=9, A);
      if V <> [] then V:= sort(remove(istriv,map(sqrt,V))); R:= R,op(V); fi
    od:
    R;# Robert Israel, Jun 15 2025
  • PARI
    select( {is_A384095(n)=n%10 && sumdigits(n^2)==9 && !bittest(36938, fromdigits(Set(digits(n))))}, [1..10^5])
Showing 1-3 of 3 results.