A133534
Sum of third powers of two consecutive primes.
Original entry on oeis.org
35, 152, 468, 1674, 3528, 7110, 11772, 19026, 36556, 54180, 80444, 119574, 148428, 183330, 252700, 354256, 432360, 527744, 658674, 746928, 882056, 1064826, 1276756, 1617642, 1942974, 2123028, 2317770, 2520072, 2737926, 3491280
Offset: 1
a(1)=35 because 2^3+3^3=35.
Cf.
A034963,
A133524,
A133525,
A133526,
A133527,
A133528,
A133529,
A133530,
A133531,
A133532,
A069484,
A133535,
A133536,
A133537,
A133538.
-
a = 3; Table[Prime[n]^a + Prime[n + 1]^a, {n, 1, 100}]
Total[#^3]&/@Partition[Prime[Range[50]],2,1] (* Harvey P. Dale, Jan 29 2021 *)
A133535
Sum of fourth powers of two consecutive primes.
Original entry on oeis.org
97, 706, 3026, 17042, 43202, 112082, 213842, 410162, 987122, 1630802, 2797682, 4699922, 6244562, 8298482, 12770162, 20007842, 25963202, 33996962, 45562802, 53809922, 67348322, 86408402, 110200562, 151271522, 192589682, 216611282
Offset: 1
Cf.
A034963,
A133524,
A133525,
A133526,
A133527,
A133528,
A133529,
A133530,
A133531,
A133532,
A069484,
A133534,
A133536,
A133537,
A133538.
A133536
Sum of fifth powers of two consecutive primes.
Original entry on oeis.org
275, 3368, 19932, 177858, 532344, 1791150, 3895956, 8912442, 26947492, 49140300, 97973108, 185200158, 262864644, 376353450, 647540500, 1133119792, 1559520600, 2194721408, 3154354458, 3877300944, 5150127992, 7016097042, 9523100092
Offset: 1
Cf.
A034963,
A133524,
A133525,
A133526,
A133527,
A133528,
A133529,
A133530,
A133531,
A133532,
A069484,
A133534,
A133535,
A133537,
A133538.
A133537
Sum of sixth powers of two consecutive primes.
Original entry on oeis.org
793, 16354, 133274, 1889210, 6598370, 28964378, 71183450, 195081770, 742859210, 1482327002, 3453230090, 7315830650, 11071467290, 17100578378, 32943576458, 64344894770, 93700908002, 141978756530, 218558666090, 279434510210
Offset: 1
a(1)=793 because 2^6+3^6=793.
Cf.
A034963,
A133524,
A133525,
A133526,
A133527,
A133528,
A133529,
A133530,
A133531,
A133532,
A069484,
A133534,
A133535,
A133536,
A133538.
A133539
Sum of third powers of five consecutive primes.
Original entry on oeis.org
1834, 4023, 8909, 15643, 27467, 50525, 78119, 123859, 185921, 253261, 332695, 451781, 606507, 764567, 985823, 1239911, 1480051, 1767711, 2112517, 2516723, 3071485, 3712769, 4312457, 4965713, 5555773, 6085997, 7104079, 8259443
Offset: 1
a(1)=1834 because 2^3+3^3+5^3+7^3+11^3=1834.
Cf.
A034963,
A133524,
A133525,
A133526,
A133527,
A133528,
A133529,
A133530,
A133531,
A133532,
A069484,
A133534,
A133535,
A133536,
A133537,
A034964,
A133538,
A133540,
A133541,
A133542,
A133543.
-
a = 3; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a + Prime[n + 4]^a, {n, 1, 100}]
Total[#^3]&/@Partition[Prime[Range[40]],5,1] (* Harvey P. Dale, May 01 2013 *)
A133543
Sum of seventh powers of five consecutive primes.
Original entry on oeis.org
20391154, 83139543, 493476029, 1387269643, 4791271547, 22021660685, 49471526279, 143993064739, 337853466881, 606267252541, 1095640496695, 2242839022421, 4636558630107, 7584547192247, 13373440186463
Offset: 1
a(1)=20391154 because 2^7+3^7+5^7+7^7+11^7=20391154
Cf.
A034963,
A133524,
A133525,
A133526,
A133527,
A133528,
A133529,
A133530,
A133531,
A133532,
A069484,
A133534,
A133535,
A133536,
A133537,
A034964,
A133538,
A133539,
A133540,
A133541,
A133542.
-
a = 7; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a + Prime[n + 4]^a, {n, 1, 100}]
Total/@Partition[Prime[Range[20]]^7,5,1] (* Harvey P. Dale, Mar 05 2022 *)
A133559
Primes which have a partition as the sum of squares of five consecutive primes.
Original entry on oeis.org
373, 653, 5381, 6701, 8069, 19541, 24821, 53549, 56909, 69389, 93581, 107741, 131837, 184901, 196661, 237821, 252509, 344021, 370661, 395069, 498989, 609269, 783701, 1055429, 1174781, 1239341, 1492637, 1576229, 1713989, 1749149, 2024261
Offset: 1
a(1)=373 because prime(2)^2 + prime(3)^2 + prime(4)^2 + prime(5)^2 + prime(6)^2 = 3^2 + 5^2 + 7^2 + 11^2 + 13^2 = 373 is prime. [Corrected by _Jonathan Sondow_, Nov 04 2015]
-
b = {}; a = 2; Do[k = Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a + Prime[n + 4]^a; If[PrimeQ[k], AppendTo[b, k]], {n, 1, 100}]; b
Select[Total/@Partition[Prime[Range[200]]^2,5,1],PrimeQ] (* Harvey P. Dale, Apr 07 2015 *)
A133541
Sum of fifth powers of five consecutive primes.
Original entry on oeis.org
181258, 552519, 1972133, 4445107, 10864643, 31214741, 59472599, 127396699, 240776801, 381348901, 590182759, 979749101, 1625329443, 2354069543, 3557186207, 5132070551, 6786946651, 9149078751, 12243523093, 16477457435
Offset: 1
a(1)=181258 because 2^5+3^5+5^5+7^5+11^5=181258.
Cf.
A034963,
A133524,
A133525,
A133526,
A133527,
A133528,
A133529,
A133530,
A133531,
A133532,
A069484,
A133534,
A133535,
A133536,
A133537,
A034964,
A133538,
A133539,
A133540,
A133542,
A133543.
-
a = 5; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a + Prime[n + 4]^a, {n, 1, 100}]
Total/@Partition[Prime[Range[30]]^5,5,1] (* Harvey P. Dale, Dec 02 2017 *)
A133542
Sum of sixth powers of five consecutive primes.
Original entry on oeis.org
1905628, 6732373, 30869213, 77899469, 225817709, 818869469, 1701546341, 4243135181, 8946193541, 15119520701, 25303912709, 46580770157, 86195577389, 132965847509, 217102866629, 334423935221, 463593800381, 664500722261
Offset: 1
a(1)=1905628 because 2^6+3^6+5^6+7^6+11^6=1905628.
Cf.
A034963,
A133524,
A133525,
A133526,
A133527,
A133528,
A133529,
A133530,
A133531,
A133532,
A069484,
A133534,
A133535,
A133536,
A133537,
A034964,
A133538,
A133539,
A133540,
A133541,
A133543.
-
a = 6; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a + Prime[n + 4]^a, {n, 1, 100}]
Total/@(Partition[Prime[Range[30]],5,1]^6) (* Harvey P. Dale, Mar 13 2011 *)
A133560
Primes which have a partition as the sum of squares of seven consecutive primes.
Original entry on oeis.org
1543, 3271, 4519, 7591, 9439, 11719, 23599, 39631, 45319, 51031, 56599, 90199, 151471, 173359, 210319, 222919, 235159, 261463, 313879, 367711, 402511, 459223, 478831, 499711, 610567, 634327, 732967, 760519, 819319, 883087, 939439, 968959
Offset: 1
a(3)=4519 because 13^2 + 17^2 + 19^2 + 23^2 + 29^2 + 31^2 + 37^2 = 4519 is prime.
-
select(isprime,[seq(add(ithprime(n+k)^2,k=0..6),n=1..80)]); # Muniru A Asiru, Jul 19 2018
-
b = {}; a = 2; Do[k = Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a + Prime[n + 4]^a + Prime[n + 5]^a + Prime[n + 6]^a; If[PrimeQ[k], AppendTo[b, k]], {n, 1, 100}]; b
(* Second program: *)
Select[Map[Total, Partition[Prime@ Range@ 80, 7, 1]^2], PrimeQ] (* Michael De Vlieger, Jul 20 2018 *)
Showing 1-10 of 13 results.
Comments