cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A192930 Decimal expansion of Pi*cos(phi) - Pi/2, where phi is the constant defined by A191102.

Original entry on oeis.org

9, 1, 5, 0, 8, 9, 6, 4, 0, 7, 9, 6, 3, 4, 2, 0, 9, 3, 4, 2, 1, 9, 8, 3, 8, 1, 4, 1, 7, 5, 9, 3, 1, 0, 7, 1, 0, 9, 2, 9, 6, 2, 8, 9, 7, 1, 4, 9, 7, 3, 8, 6, 0, 1, 1, 3, 2, 9, 2, 1, 4, 2, 0, 7, 9, 0, 5, 8, 2, 2, 1, 8, 8, 2, 2, 5, 9, 2, 4, 8, 4, 2, 3, 4, 4, 8, 0, 7, 5, 4, 0, 0, 4, 4, 4, 3, 3, 9, 0
Offset: 0

Views

Author

N. J. A. Sloane, Jul 12 2011

Keywords

Comments

Length of the rope in the "goat outside the fence" version of the grazing goat problem, when the radius of the circular field is assumed to be 1. See Fraser (1982) for details. - Hugo Pfoertner, Apr 05 2020

Examples

			0.91508964079634209342198381417593107109296289714973860113292...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Pi(R)*( Cos(Arccos(6/Pi(R)^2 -1)/3) -1/2); // G. C. Greubel, Feb 06 2019
    
  • Mathematica
    RealDigits[Pi*(Cos[ArcCos[6/Pi^2 -1]/3] -1/2), 10, 100][[1]] (* G. C. Greubel, Feb 06 2019 *)
  • PARI
    Pi*cos(acos(6/Pi^2-1)/3) - Pi/2 \\ Michel Marcus, Sep 19 2017
    
  • Sage
    numerical_approx(pi*(cos(acos(6/pi^2 -1)/3) - 1/2), digits=100) # G. C. Greubel, Feb 06 2019

Formula

Equals (z + 1/z - 1)*Pi/2 where x = 6/Pi^2 - 1 and z = (x - sqrt(x^2 - 1))^(1/3). - Peter Luschny, Apr 05 2020

A352453 Decimal expansion of the area of intersection of 4 unit-radius circles that have the vertices of a unit-side square as centers.

Original entry on oeis.org

3, 1, 5, 1, 4, 6, 7, 4, 3, 6, 2, 7, 7, 2, 0, 4, 5, 2, 6, 2, 6, 7, 6, 8, 1, 1, 9, 5, 8, 7, 2, 9, 5, 2, 6, 1, 1, 2, 2, 9, 1, 7, 8, 7, 9, 3, 1, 4, 6, 5, 4, 6, 4, 5, 6, 0, 2, 5, 0, 7, 8, 8, 4, 6, 5, 0, 6, 7, 2, 4, 5, 1, 8, 5, 3, 2, 6, 9, 6, 2, 9, 1, 2, 8, 1, 9, 8, 7, 5, 5, 0, 2, 3, 4, 5, 7, 1, 1, 3, 6, 5, 1, 7, 5, 6
Offset: 0

Views

Author

Amiram Eldar, Mar 16 2022

Keywords

Comments

The solution to a problem in Jones (1932): "At each corner of a garden, surrounded by a wall n yards square, a goat is tied with a rope n yards long. Find the area of the part of the garden common to the four goats." (When the square is taken to be of unit size, the common area is this constant.)
The perimeter of the shape formed by the intersection is 2*Pi/3 (A019693).
The solution to the three-dimensional version of this problem is A352454.

Examples

			0.31514674362772045262676811958729526112291787931465...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1 + Pi/3 - Sqrt[3], 10, 100][[1]]

Formula

Equals 1 + Pi/3 - sqrt(3) = 1 + A019670 - A002194.

A173201 Fixed point of the iteration x |--> x - (sin(x) - cos(x)*x - Pi/2)/(sin(x)*x).

Original entry on oeis.org

1, 9, 0, 5, 6, 9, 5, 7, 2, 9, 3, 0, 9, 8, 8, 3, 8, 9, 4, 8, 8, 2, 6, 6, 6, 4, 3, 7, 1, 6, 0, 9, 6, 6, 7, 0, 3, 4, 9, 5, 0, 4, 3, 1, 2, 1, 6, 1, 2, 8, 0, 3, 2, 1, 2, 1, 9, 3, 5, 6, 4, 5, 5, 9, 9, 9, 4, 5, 4, 4, 2, 4, 0, 9, 9, 5, 7, 9, 5, 0, 2, 2, 7, 5, 7, 1, 6, 1, 6, 6, 3, 4, 6, 4, 6, 3, 0, 3, 9, 7, 1, 5, 3, 9, 8
Offset: 1

Views

Author

Gerd Lamprecht (gerdlamprecht(AT)googlemail.com), Feb 12 2010

Keywords

Comments

Decimal expansion of psi, the unique solution on (0,Pi) of sin(psi) - psi*cos(psi) = Pi/2, an auxiliary constant used in the Hall-Tenenbaum inequality applied to real multiplicative functions. - Jean-François Alcover, Sep 05 2014

Examples

			A133731 = cos(1.9056957293.../2)*2.
		

Crossrefs

Programs

  • Mathematica
    psi = x /. FindRoot[Sin[x] - x*Cos[x] == Pi/2, {x, 2}, WorkingPrecision -> 102]; RealDigits[psi] // First (* Jean-François Alcover, Sep 05 2014 *)
  • PARI
    solve(x=1,2,sin(x)-x*cos(x)-Pi/2) \\ Charles R Greathouse IV, Mar 03 2021

Formula

x := x - (sin(x) - cos(x)*x - Pi/2)/(sin(x)*x).
Equals 2*arccos(A133731/2).

A075838 Decimal expansion of the solution to the donkey problem.

Original entry on oeis.org

9, 5, 2, 8, 4, 7, 8, 6, 4, 6, 5, 4, 9, 4, 1, 9, 4, 7, 4, 4, 1, 3, 3, 3, 2, 1, 8, 5, 8, 0, 4, 8, 3, 3, 5, 1, 7, 4, 7, 5, 2, 1, 5, 6, 0, 8, 0, 6, 4, 0, 1, 6, 0, 6, 0, 9, 6, 7, 8, 2, 2, 7, 9, 9, 9, 7, 2, 7, 2, 1, 2, 0, 4, 9, 7, 8, 9, 7, 5, 1, 1, 3, 7, 8, 5, 8, 0, 8, 3, 1, 7, 3, 2, 3, 1, 5
Offset: 0

Views

Author

Zak Seidov, Oct 17 2002

Keywords

Examples

			0.95284786465494194744133321858048335174752156080640...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[x /. FindRoot[4*x*Cos[x]^2 + Pi/2 - 2*x - Sin[2*x] == 0, {x, 1}, WorkingPrecision -> 120], 10, 105][[1]] (* Amiram Eldar, Apr 29 2023 *)
  • PARI
    solve(x=0, 1, 4*x*cos(x)^2 + Pi/2 - 2*x - sin(2*x)) \\ Michel Marcus, Sep 19 2017

Formula

x: 4x*cos^2(x) + (1/2)Pi - 2x - sin(2x) = 0.

A336198 Decimal expansion of the radius of a sphere centered on the surface of a unit-radius sphere and dividing it into two parts of equal volume.

Original entry on oeis.org

1, 2, 2, 8, 5, 4, 4, 8, 6, 3, 7, 3, 5, 2, 2, 0, 9, 0, 3, 4, 4, 8, 9, 9, 4, 4, 9, 7, 6, 8, 5, 2, 9, 3, 4, 6, 5, 6, 4, 4, 1, 9, 1, 6, 4, 5, 5, 1, 8, 6, 0, 2, 6, 4, 1, 5, 9, 0, 8, 1, 9, 5, 2, 4, 5, 1, 0, 9, 7, 2, 7, 2, 3, 4, 4, 6, 8, 8, 4, 6, 7, 2, 9, 6, 0, 0, 7
Offset: 1

Views

Author

Amiram Eldar, Jul 11 2020

Keywords

Comments

The solution to the grazing goat problem in three dimensions.

Examples

			1.228544863735220903448994497685293465644191645518602...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[x /. Solve[3*x^4 - 8*x^3 + 8 == 0 && x > 0, {x}, Reals][[1]], 10, 100][[1]]

Formula

The smaller of the 2 real roots of the equation 3*x^4 - 8*x^3 + 8 = 0.

A173571 Decimal expansion of constant related to Goat Problem, Donkey Problem, Tenenbaum and A173201.

Original entry on oeis.org

9, 4, 4, 4, 4, 3, 3, 7, 8, 2, 0, 5, 5, 7, 9, 0, 4, 6, 4, 9, 2, 2, 0, 8, 6, 0, 4, 2, 1, 2, 9, 7, 8, 4, 9, 9, 8, 2, 1, 1, 1, 6, 0, 1, 8, 7, 7, 1, 6, 3, 4, 3, 8, 5, 8, 4, 8, 2, 2, 4, 4, 2, 1, 9, 5, 3, 1, 3, 5, 9, 3, 3, 1, 8, 3, 7, 0, 2, 2, 9, 8, 3, 5, 2, 7, 8, 7, 7, 6, 8, 5, 9, 2, 3, 0, 7, 2, 2, 2, 6, 6, 0, 8, 3, 7
Offset: 0

Views

Author

Gerd Lamprecht (gerdlamprecht(AT)googlemail.com), Feb 22 2010

Keywords

Examples

			0.9528478646... = A075838 =(0.9444433782055...+PI/2-asin(0.9444433782055...))/(A133731^2);
		

Formula

x = sqrt(1-A072112^2) = sqrt(1-(1-A133731^2/2)^2); A075838 =(x+PI/2-asin(x))/(A133731^2); with A072112=1-A133731^2/2; A133731=cos(A173201/2)*2;
Showing 1-6 of 6 results.