cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A173571 Decimal expansion of constant related to Goat Problem, Donkey Problem, Tenenbaum and A173201.

Original entry on oeis.org

9, 4, 4, 4, 4, 3, 3, 7, 8, 2, 0, 5, 5, 7, 9, 0, 4, 6, 4, 9, 2, 2, 0, 8, 6, 0, 4, 2, 1, 2, 9, 7, 8, 4, 9, 9, 8, 2, 1, 1, 1, 6, 0, 1, 8, 7, 7, 1, 6, 3, 4, 3, 8, 5, 8, 4, 8, 2, 2, 4, 4, 2, 1, 9, 5, 3, 1, 3, 5, 9, 3, 3, 1, 8, 3, 7, 0, 2, 2, 9, 8, 3, 5, 2, 7, 8, 7, 7, 6, 8, 5, 9, 2, 3, 0, 7, 2, 2, 2, 6, 6, 0, 8, 3, 7
Offset: 0

Views

Author

Gerd Lamprecht (gerdlamprecht(AT)googlemail.com), Feb 22 2010

Keywords

Examples

			0.9528478646... = A075838 =(0.9444433782055...+PI/2-asin(0.9444433782055...))/(A133731^2);
		

Formula

x = sqrt(1-A072112^2) = sqrt(1-(1-A133731^2/2)^2); A075838 =(x+PI/2-asin(x))/(A133731^2); with A072112=1-A133731^2/2; A133731=cos(A173201/2)*2;

A133731 Decimal expansion of goat tether length to graze half a unit field.

Original entry on oeis.org

1, 1, 5, 8, 7, 2, 8, 4, 7, 3, 0, 1, 8, 1, 2, 1, 5, 1, 7, 8, 2, 8, 2, 3, 3, 5, 0, 9, 9, 3, 3, 5, 0, 9, 1, 4, 9, 6, 8, 8, 2, 9, 2, 2, 6, 6, 4, 9, 2, 0, 9, 6, 5, 1, 1, 8, 2, 0, 6, 9, 5, 8, 8, 4, 8, 2, 0, 6, 6, 9, 8, 0, 2, 5, 5, 9, 1, 9, 6, 0, 9, 3, 1, 9, 9, 3, 2, 1, 6, 1, 0, 7, 3, 0, 8, 6, 0, 4, 3, 8, 1, 7, 5, 9, 6
Offset: 1

Views

Author

Eric W. Weisstein, Sep 21 2007

Keywords

Comments

See Ullisch link for a closed form. - Charles R Greathouse IV, Jul 08 2023

Examples

			1.1587284730181215178...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.2, p. 487.
  • Ingo Ullisch, A Closed-Form Solution to the Geometric Goat Problem, The Mathematical Intelligencer volume 42 (2020), pp. 12-16.

Programs

Formula

Equals cos(A173201/2)*2. - Gerd Lamprecht (gerdlamprecht(AT)googlemail.com), Feb 12 2010

A192930 Decimal expansion of Pi*cos(phi) - Pi/2, where phi is the constant defined by A191102.

Original entry on oeis.org

9, 1, 5, 0, 8, 9, 6, 4, 0, 7, 9, 6, 3, 4, 2, 0, 9, 3, 4, 2, 1, 9, 8, 3, 8, 1, 4, 1, 7, 5, 9, 3, 1, 0, 7, 1, 0, 9, 2, 9, 6, 2, 8, 9, 7, 1, 4, 9, 7, 3, 8, 6, 0, 1, 1, 3, 2, 9, 2, 1, 4, 2, 0, 7, 9, 0, 5, 8, 2, 2, 1, 8, 8, 2, 2, 5, 9, 2, 4, 8, 4, 2, 3, 4, 4, 8, 0, 7, 5, 4, 0, 0, 4, 4, 4, 3, 3, 9, 0
Offset: 0

Views

Author

N. J. A. Sloane, Jul 12 2011

Keywords

Comments

Length of the rope in the "goat outside the fence" version of the grazing goat problem, when the radius of the circular field is assumed to be 1. See Fraser (1982) for details. - Hugo Pfoertner, Apr 05 2020

Examples

			0.91508964079634209342198381417593107109296289714973860113292...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Pi(R)*( Cos(Arccos(6/Pi(R)^2 -1)/3) -1/2); // G. C. Greubel, Feb 06 2019
    
  • Mathematica
    RealDigits[Pi*(Cos[ArcCos[6/Pi^2 -1]/3] -1/2), 10, 100][[1]] (* G. C. Greubel, Feb 06 2019 *)
  • PARI
    Pi*cos(acos(6/Pi^2-1)/3) - Pi/2 \\ Michel Marcus, Sep 19 2017
    
  • Sage
    numerical_approx(pi*(cos(acos(6/pi^2 -1)/3) - 1/2), digits=100) # G. C. Greubel, Feb 06 2019

Formula

Equals (z + 1/z - 1)*Pi/2 where x = 6/Pi^2 - 1 and z = (x - sqrt(x^2 - 1))^(1/3). - Peter Luschny, Apr 05 2020
Showing 1-3 of 3 results.