cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A254794 Decimal expansion of L^2/Pi where L is the lemniscate constant A062539.

Original entry on oeis.org

2, 1, 8, 8, 4, 3, 9, 6, 1, 5, 2, 2, 6, 4, 7, 6, 6, 3, 8, 8, 3, 6, 7, 6, 9, 9, 4, 0, 7, 0, 4, 4, 6, 4, 5, 4, 3, 2, 5, 9, 3, 7, 2, 7, 2, 2, 8, 2, 5, 5, 6, 6, 7, 2, 2, 1, 1, 9, 2, 8, 6, 2, 1, 0, 5, 7, 9, 4, 5, 1, 9, 3, 8, 4, 4, 5, 9, 3, 2, 9, 4, 7, 7, 7, 1, 0, 3, 3, 1, 4, 9, 6, 7, 7, 5, 6, 0, 8, 6, 3, 1, 8, 0, 2
Offset: 1

Views

Author

Peter Bala, Feb 22 2015

Keywords

Comments

Brouncker gave the generalized continued fraction expansion 4/Pi = 1 + 1^2/(2 + 3^2/(2 + 5^2/(2 + ... ))). More generally, Osler shows that the continued fraction n + 1^2/(2*n + 3^2/(2*n + 5^2/(2*n + ... ))) equals a rational multiple of 4/Pi or its reciprocal when n is a positive odd integer, and equals a rational multiple of L^2/Pi or its reciprocal when n is a positive even integer.

Examples

			2.18843961522647663883676994070446454325937272282556672211928621....
		

References

  • O. Perron, Die Lehre von den Kettenbrüchen, Band II, Teubner, Stuttgart, 1957

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(110)); 2*(Gamma(5/4)/Gamma(3/2))^4; // G. C. Greubel, Mar 06 2019
    
  • Maple
    #A254794
    digits:=105:
    2*( GAMMA(5/4)/GAMMA(3/2) )^4:
    evalf(%);
  • Mathematica
    RealDigits[2*(Gamma[5/4]/Gamma[3/2])^4, 10, 110][[1]] (* G. C. Greubel, Mar 06 2019 *)
  • PARI
    default(realprecision, 110); 2*(gamma(5/4)/gamma(3/2))^4 \\ G. C. Greubel, Mar 06 2019
    
  • Sage
    numerical_approx(2*(gamma(5/4)/gamma(3/2))^4, digits=110) # G. C. Greubel, Mar 06 2019

Formula

L^2/Pi = 2*( (1/4)!/(1/2)! )^4 = 9/4*( (1/4)!/(3/4)! )^2.
L^2/Pi = lim_{n -> oo} (4*n + 2) * Product {k = 0..n} ( (4*k - 1)/(4*k + 1) )^2
Generalized continued fraction: L^2/Pi = 2 + 1^2/(4 + 3^2/(4 + 5^2/(4 + ... ))). This is the particular case n = 0, x = 2 of a result of Ramanujan - see Berndt et al., Entry 25. See also Perron, p. 35.
The sequence of convergents to Ramanujan's continued fraction begins [2/1, 9/4, 54/25, 441/200, 4410/2025, ...]. See A254795 for the numerators and A254796 for the denominators.
Another continued fraction is L^2/Pi = 1 + 2/(1 + 1*3/(2 + 3*5/(2 + 5*7/(2 + 7*9/(2 + ... ))))), which can be transformed into the slowly converging series: L^2/Pi = 1 + 4 * Sum {n >= 0} P(n)^2/(4*n + 5), where P(n) = Product {k = 1..n} (4*k - 1)/(4*k + 1).
(L^2/Pi)^2 = 3 + 2*( 1^2/(1 + 1^2/(3 + 3^2/(1 + 3^2/(3 + 5^2/(1 + 5^2/(3 + ... )))))) ) follows by setting n = 0, x = 2 in Entry 26 of Berndt et al.
From Peter Bala, Feb 28 2019: (Start)
For m = 0,1,2,..., C = 4*(m + 1)*P(m)/Q(m), where P(m) = Product_{n >= 1} ( 1 - (4*m + 3)^2/(4*n + 1)^2 ) and Q(m) = Product_{n >= 0} ( 1 - (4*m + 1)^2/(4*n + 3)^2 ).
For m = 0,1,2,..., C = - Product_{k = 1..m} (1 - 4*k)/(1 + 4*k) * Product_{n >= 0} ( 1 - (4*m + 2)^2/(4*n + 1)^2 ) and
1/C = Product_{k = 0..m} (1 + 4*k)/(1 - 4*k) * Product_{n >= 0} ( 1 - (4*m + 2)^2/(4*n + 3)^2 ).
C = (Pi/2) * ( Sum_{n = -oo..oo} exp(-Pi*n^2) )^4. (End)
Equals A133748/Pi. - Hugo Pfoertner, Apr 13 2024

A133747 Decimal expansion of the nonzero invariant of the Weierstrass elliptic function with half-periods 1/2 and i/2.

Original entry on oeis.org

1, 8, 9, 0, 7, 2, 7, 2, 0, 1, 2, 9, 2, 3, 3, 8, 5, 2, 2, 9, 3, 0, 6, 1, 3, 9, 6, 5, 3, 4, 9, 2, 1, 3, 1, 3, 3, 9, 8, 7, 3, 1, 1, 6, 1, 2, 7, 0, 8, 9, 1, 1, 4, 6, 3, 0, 8, 2, 3, 2, 4, 2, 1, 4, 4, 3, 0, 5, 5, 5, 9, 0, 2, 6, 0, 9, 6, 4, 7, 6, 7, 2, 9, 6, 6, 5, 2, 1, 6, 6, 3, 7, 3, 0, 4, 4, 7, 0, 4, 9, 3, 4, 0, 4, 4
Offset: 3

Views

Author

Eric W. Weisstein, Sep 22 2007

Keywords

Examples

			189.07272012923385229...
		

Crossrefs

Cf. A133748.

Programs

  • Mathematica
    First[RealDigits[(1/2 Beta[1/4, 1/4])^4, 10, 30]] (* Jan Mangaldan, Mar 02 2013 *)

Formula

Equals (beta(1/4, 1/4)/2)^4 = gamma(1/4)^8/(16*Pi^2). - Jan Mangaldan, Mar 02 2013
Showing 1-2 of 2 results.