cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A134006 a(n) = 1^n + 3^n + 5^n + 7^n.

Original entry on oeis.org

4, 16, 84, 496, 3108, 20176, 134004, 903856, 6161988, 42326416, 292299924, 2026332016, 14085959268, 98111307856, 684331371444, 4778093436976, 33385561506948, 233393582580496, 1632228682596564, 11417969833962736
Offset: 0

Views

Author

Artur Jasinski, Oct 01 2007

Keywords

Examples

			a(3)=84 because 1^2+3^2+5^2+7^2=84.
		

Crossrefs

Programs

  • Magma
    [1^n + 3^n + 5^n + 7^n: n in [0..30]]; // Vincenzo Librandi, Jun 20 2011
    
  • Mathematica
    Table[1^n+3^n+5^n+7^n,{n,0,30}]
  • PARI
    {a(n) = 1^n + 3^n + 5^n + 7^n}; /* Michael Somos, Jun 29 2017 */

Formula

a(n) = 15*a(n-1) - 71*a(n-2) + 105*a(n-3) - 48.
a(n) = A074507(n) + A000420(n). - Michel Marcus, Nov 07 2013
G.f.: 1 / (1 - x) + 1 / (1 - 3*x) + 1 / (1 - 5*x) + 1 / (1 - 7*x), E.g.f.: exp(x) + exp(3*x) + exp(5*x) + exp(7*x). - Michael Somos, Jun 29 2017

A134008 a(n) = 1^n + 3^n + 5^n + 7^n + 9^n + 11^n.

Original entry on oeis.org

6, 36, 286, 2556, 24310, 240276, 2437006, 25173996, 263567590, 2787694596, 29716508926, 318719062236, 3434943872470, 37162689280116, 403310957409646, 4387917394947276, 47836135613930950, 522357603781540836
Offset: 0

Views

Author

Artur Jasinski, Oct 01 2007

Keywords

Examples

			a(3)=286 because 1^2 + 3^2 + 5^2 + 7^2 + 9^2 + 11^2 = 286.
		

Crossrefs

Programs

  • Magma
    [1^n + 3^n + 5^n + 7^n + 9^n + 11^n: n in [0..20]]; // Vincenzo Librandi, Jun 20 2011
  • Mathematica
    Table[1^n+3^n+5^n+7^n+9^n+11^n,{n,0,30}]
    Join[{6},Table[Total[Range[1,11,2]^n],{n,20}]] (* or *) LinearRecurrence[ {36,-505,3480,-12139,19524,-10395},{6,36,286,2556,24310,240276},20] (* Harvey P. Dale, Apr 20 2015 *)

Formula

a(n) = 35*a(n-1) - 470*a(n-2) + 3010*a(n-3) - 9129*a(n-4) + 10395*a(n-5) - 3840.
G.f.: -2*(6*x-1)*(1627*x^4 - 1752*x^3 + 578*x^2 - 72*x + 3)/((-1+x)*(9*x-1)*(7*x-1)*(3*x-1)*(5*x-1)*(11*x-1)). - R. J. Mathar, Nov 14 2007
a(n) = 36*a(n-1) - 505*a(n-2) + 3480*a(n-3) - 12139*a(n-4) + 19524*a(n-5) - 10395*a(n-6); a(0)=6, a(1)=36, a(2)=286, a(3)=2556, a(4)=24310, a(5)=240276. - Harvey P. Dale, Apr 20 2015
Showing 1-2 of 2 results.