cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A081604 Number of digits in ternary representation of n.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 23 2003

Keywords

Comments

a(n) is the length of row n in table A054635. - Reinhard Zumkeller, Sep 05 2014

Examples

			a(8) = 2 because 8 = 22_3, having 2 digits.
a(9) = 3 because 9 = 100_3, having 3 digits.
		

Crossrefs

Programs

  • Haskell
    a081604 n = if n < 3 then 1 else a081604 (div n 3) + 1
    -- Reinhard Zumkeller, Sep 05 2014, Feb 21 2013
  • Maple
    A081604 := proc(n)
        max(1,1+ilog[3](n)) ;
    end proc: # R. J. Mathar, Jul 12 2016
  • Mathematica
    Table[Length[IntegerDigits[n, 3]], {n, 0, 99}] (* Alonso del Arte, Dec 30 2012 *)
    Join[{1},IntegerLength[Range[120],3]] (* Harvey P. Dale, Apr 07 2019 *)

Formula

a(n) = A062153(n) + 1 for n >= 1.
a(n) = A077267(n) + A062756(n) + A081603(n);
From Reinhard Zumkeller, Oct 19 2007: (Start)
0 <= A134021(n) - a(n) <= 1;
a(A134025(n)) = A134021(A134025(n));
a(A134026(n)) = A134021(A134026(n)) - 1. (End)
a(n+1) = -Sum_{k=1..n} mu(3*k)*floor(n/k). - Benoit Cloitre, Oct 21 2009
a(n) = floor(log_3(n)) + 1. - Can Atilgan and Murat Erşen Berberler, Dec 05 2012
a(n) = if n < 3 then 1 else a(floor(n/3)) + 1. - Reinhard Zumkeller, Sep 05 2014
G.f.: 1 + (1/(1 - x))*Sum_{k>=0} x^(3^k). - Ilya Gutkovskiy, Jan 08 2017

A134021 Length of n in balanced ternary representation.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 19 2007

Keywords

Comments

Shifted variant of A064099.

Examples

			100 = 1*3^4+1*3^3-1*3^2+0*3^1+1*3^0: a(100) = |++-0+| = 5.
200 = 1*3^5-1*3^4+1*3^3+1*3^2+1*3^1-1*3^0: a(200) = |+-+++-| = 6.
300 = 1*3^5+1*3^4-1*3^3+0*3^2+1*3^1+0*3^0: a(300) = |++-0+0| = 6.
		

References

  • Donald E. Knuth, The Art of Computer Programming, Addison-Wesley, Reading, MA, Vol. 2, pp. 173-175.

Crossrefs

Programs

  • Mathematica
    a[n_] := Ceiling[Log[3, 2*n+1]]; a[0] = 1; Array[a, 100, 0] (* Amiram Eldar, Apr 03 2025 *)
  • Python
    def a(n):
        if n==0: return 1
        s=0
        x=0
        while n>0:
            x=n%3
            n=n//3
            if x==2:
                x=-1
                n+=1
            s+=1
        return s
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 07 2017

Formula

For n > 0: a(n) = ceiling(log(2*n+1)/log(3)).
a(n) = A134022(n) + A134023(n) + A134024(n).
0 <= a(n) - A081604(n) <= 1.
a(A134025(n)) = A081604(A134025(n)); a(A134026(n)) = A081604(A134026(n))+1.
a(A134027(n)) = a(n); a(abs(A134028(n))) <= a(n).
a(n) = A064099(n-1) for n>1.
n = Sum_{k=0..a(n)-1} (A059095(A134421(n)-2-k)*3^k), for n > 0. - Reinhard Zumkeller, Oct 25 2007
a(n) = A005812(n) + A134023(n).

A157671 Numbers whose ternary representation begins with 2.

Original entry on oeis.org

2, 6, 7, 8, 18, 19, 20, 21, 22, 23, 24, 25, 26, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184
Offset: 1

Views

Author

Zak Seidov, Mar 04 2009

Keywords

Comments

From R. J. Mathar, Mar 03 2009: (Start)
If we look at the sequence first differences, i.e.,
2, 4, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 28, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 82, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, we obtain the records in A034472. (End)
The lower and upper asymptotic densities of this sequence are 1/4 and 1/2, respectively. - Amiram Eldar, Feb 28 2021

Crossrefs

Subsequence of A134026. - Reinhard Zumkeller, Jan 20 2010

Programs

  • Haskell
    a157671 n = a157671_list !! (n-1)
    a157671_list = filter ((== 2) . until (< 3) (flip div 3)) [1..]
    -- Reinhard Zumkeller, Feb 06 2015
  • Maple
    for n from 1 to 300 do dgs := convert(n,base,3) ; if op(-1,dgs) = 2 then printf("%d,",n) ; fi; od: # R. J. Mathar, Mar 03 2009
  • Mathematica
    Flatten[(Range[2*3^#,3^(#+1)-1])&/@Range[0,4]]
    Select[Range[200],First[IntegerDigits[#,3]]==2&] (* Harvey P. Dale, Oct 16 2012 *)
    Table[FromDigits[#,3]&/@(Join[{2},#]&/@Tuples[{0,1,2},n]),{n,0,4}]// Flatten (* Harvey P. Dale, Jan 28 2022 *)
  • PARI
    s=[];for(n=0,4,for(x=3^n,2*3^n-1,s=concat(s,x)));s
    

Formula

A number k is a term if and only if 2*3^m <= k <= 3^(m+1)-1, for m=0,1,2,...
A171960(a(n)) < a(n). - Reinhard Zumkeller, Jan 20 2010

A171960 Values of the 2-complement of n in ternary representation.

Original entry on oeis.org

2, 1, 0, 5, 4, 3, 2, 1, 0, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 20 2010

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 3^(1 + Floor[Log[3, n]]) - n - 1; a[0] = 2; Array[a, 100] (* Amiram Eldar, Apr 03 2025 *)
  • PARI
    a(n) = 3^(if(n,logint(n,3))+1) - 1 - n; \\ Kevin Ryde, Jul 16 2020

Formula

a(n) = if n < 3 then 2 - n else 3*a(floor(n/3)) + 2 - n mod 3.
a(A134026(n)) < A134026(n).
a(A003462(n)) = A003462(n).
a(A134025(n)) >= A134025(n).

A134025 Numbers for which the balanced ternary representation is the same length as the ternary representation.

Original entry on oeis.org

0, 1, 3, 4, 9, 10, 11, 12, 13, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 19 2007

Keywords

Comments

A003462 is a subsequence; A171960(a(n)) >= a(n). - Reinhard Zumkeller, Jan 20 2010

Crossrefs

Complement of A134026.

Programs

  • Maple
    0,seq($3^(d-1)..floor(3^d/2), d=0..5); # Robert Israel, Dec 14 2015
  • Mathematica
    f[n_, m_, k_] := If[n == 0, k, If[k < (3^(m + 1) - 1)/2, f[n - 1, m, k + 1], f[n - 1, m + 1, 3^(m + 1)]]]; Table[f[n, 0, 0], {n, 0, 63}] (* L. Edson Jeffery, Dec 10 2015 *)

Formula

a(n) = f(n,0,0) with f(n,m,k) = if n=0 then k else if k<(3^(m+1)-1)/2 then f(n-1,m,k+1) else f(n-1,m+1,3^(m+1)).
A134021(a(n)) = A081604(a(n)).
G.f.: x/(1-x)^2 + (1-x)^(-1)*Sum_{j>=1} ((3^j-1)/2) * x^(3/4 + 3^j/2 + j/2). - Robert Israel, Dec 14 2015

A216731 Primes p > 3 such that there is no power of 3 in the open interval (2p, 3p).

Original entry on oeis.org

5, 7, 17, 19, 23, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509
Offset: 1

Views

Author

N. J. A. Sloane, Sep 17 2012

Keywords

Comments

Is this (apart from 2) the subset of primes in A134026? - R. J. Mathar, Sep 17 2012

Programs

  • Maple
    isA216731 := proc(n)
        if isprime(n) then
            floor(log[3](2*n)) = floor(log[3](3*n)) ;
        else
            false;
        end if;
    end proc:
    for n from 2 to 250 do
        p := ithprime(n) ;
        if isA216731(p) then
            printf("%d,",p) ;
        end if;
    end do: # R. J. Mathar, Sep 17 2012
  • Mathematica
    isA216731[n_] := If[PrimeQ[n], Floor[Log[3, 2*n]] == Floor[Log[3, 3*n]], False]; Reap[For[n = 2, n <= 100, n++, p = Prime[n]; If[isA216731[p], Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Mar 06 2014, after R. J. Mathar *)

Extensions

Name corrected by Robert Israel, May 11 2025
Showing 1-6 of 6 results.