cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134287 Fifth column of triangle A103371 (without leading zeros).

Original entry on oeis.org

1, 30, 315, 1960, 8820, 31752, 97020, 261360, 637065, 1431430, 3006003, 5962320, 11262160, 20391840, 35581680, 60093504, 98590905, 157608990, 246142435, 376372920, 564559380, 832117000, 1206913500, 1724814000, 2431508625
Offset: 0

Views

Author

Wolfdieter Lang, Nov 13 2007

Keywords

Comments

Kekulé numbers for certain benzenoids.
a(n) = K(L(n))*K(O(2,4,n)) with the Cyvin and Gutman Kekulé number notation. See p. 62 for the L(n) structure with K(L(n))=n+1 and p. 105 (i) for the O(k,m,n) structure and its Kekulé number. This corresponds to an essentially disconnected 7-tier benzenoid structure similar to the 6-tier structure shown on p. 230, nr. 23 (see A108647).
a(n-5), n >= 5, is the number of ways to put n identical objects into m=5 of altogether n distinguishable boxes (n-5 boxes stay empty).

Examples

			a(2)=315 because n=7 identical balls can be put into m=5 of n=7 distinguishable boxes in binomial(7,5)*(5!/(4!*1!)+ 5!/(3!*2!)) = 21*(5+10) = 315 ways. The m=5 part partitions of 7, namely (1^4,3) and (1^3,2^2) specify the filling of each of the 21 possible five box choices. - _Wolfdieter Lang_, Nov 13 2007
		

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988.

Crossrefs

Cf. A108647 (fourth column of triangle A103371).

Programs

  • Haskell
    a134287 = flip a103371 4 . (+ 4)  -- Reinhard Zumkeller, Apr 04 2014
    
  • Magma
    [5*Binomial(n+5, 5)^2/(n+5): n in [0..30]]; // G. C. Greubel, Oct 28 2022
    
  • Maple
    seq(binomial(n+4,4)^2*(n+5)/5, n=0..24); # Peter Luschny, Jan 13 2014
  • Mathematica
    CoefficientList[Series[(1 + 20 x + 60 x^2 + 40 x^3 + 5 x^4)/(1 - x)^10, {x, 0, 24}], x]
  • MuPAD
    5*binomial(n+5,5)^2/(n+5) $ n = 0..35; // Zerinvary Lajos, May 09 2008
    
  • PARI
    a(n) = 5*binomial(n+5, 5)^2/(n+5); \\ Michel Marcus, Jan 07 2014
    
  • SageMath
    [5*binomial(n+5,5)^2/(n+5) for n in range(31)] # G. C. Greubel, Oct 28 2022

Formula

a(n) = A103371(n+4,4), n >= 0.
a(n) = ((n+1)*(n+2)*(n+3)*(n+4))^2*(n+5)/2880, n >= 0. 2880 = 4!*5! = A010790(4).
G.f.: (1+20*x+60*x^2+40*x^3+5*x^4)/(1-x)^10. Numerator polynomial from fifth row of triangle A132813.
a(n) = 5*C(n+5,5)^2/(n+5), n >= 0. - Zerinvary Lajos, May 09 2008
a(n) = (C(n+6,6)*C(n+5,4)+5*C(n+5,6)*C(n+5,4))/(n+5). - Gary Detlefs, Jan 06 2014
From Amiram Eldar, May 31 2022: (Start)
Sum_{n>=0} 1/a(n) = 350*Pi^2/3 - 13805/12.
Sum_{n>=0} (-1)^n/a(n) = 5*Pi^2 + 640*log(2)/3 - 785/4. (End)
E.g.f.: (2880 + 83520*x + 368640*x^2 + 529920*x^3 + 330120*x^4 + 102024*x^5 + 16616*x^6 + 1432*x^7 + 61*x^8 + x^9)*exp(x)/2880. - G. C. Greubel, Oct 28 2022