A134492 a(n) = Fibonacci(6*n).
0, 8, 144, 2584, 46368, 832040, 14930352, 267914296, 4807526976, 86267571272, 1548008755920, 27777890035288, 498454011879264, 8944394323791464, 160500643816367088, 2880067194370816120, 51680708854858323072, 927372692193078999176, 16641027750620563662096
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..500
- Hacène Belbachir, Soumeya Merwa Tebtoub and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- Index entries for linear recurrences with constant coefficients, signature (18,-1).
Crossrefs
Programs
-
Magma
[Fibonacci(6*n): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
-
Mathematica
Table[Fibonacci[6n], {n, 0, 30}] LinearRecurrence[{18,-1},{0,8},30] (* Harvey P. Dale, Aug 15 2017 *)
-
MuPAD
numlib::fibonacci(6*n) $ n = 0..25; // Zerinvary Lajos, May 09 2008
-
PARI
a(n)=fibonacci(6*n) \\ Charles R Greathouse IV, Sep 16 2015
-
PARI
concat(0, Vec(8*x/(1-18*x+x^2) + O(x^20))) \\ Colin Barker, Jan 24 2016
-
Sage
[fibonacci(6*n) for n in range(0, 17)] # Zerinvary Lajos, May 15 2009
Formula
a(n) = 18*a(n-1) - a(n-2) = 8*A049660(n). G.f.: 8*x/(1-18*x+x^2). - R. J. Mathar, Feb 16 2010
a(n) = ((-1+(9+4*sqrt(5))^(2*n)))/(sqrt(5)*(9+4*sqrt(5))^n). - Colin Barker, Jan 24 2016
a(n) = L(2n-1) * F(2n+1)^2 + L(2n+1) * F(2n-1)^2, where F(n) = A000045(n) and L(n) = A000032(n). - Diego Rattaggi, Nov 12 2020
a(n) = Fibonacci(3*n) * Lucas(3*n) = A000045(3*n) * A000032(3*n) = A014445(n) * A014448(n). - Amiram Eldar, Jan 11 2022
Extensions
Offset corrected by R. J. Mathar, Feb 16 2010
Comments