A134494 a(n) = Fibonacci(6n+2).
1, 21, 377, 6765, 121393, 2178309, 39088169, 701408733, 12586269025, 225851433717, 4052739537881, 72723460248141, 1304969544928657, 23416728348467685, 420196140727489673, 7540113804746346429, 135301852344706746049, 2427893228399975082453
Offset: 0
Links
Crossrefs
Programs
-
Magma
[Fibonacci(6*n +2): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
-
Maple
seq( combinat[fibonacci](6*n+2),n=0..10) ; # R. J. Mathar, Apr 17 2011
-
Mathematica
Table[Fibonacci[6n+2], {n, 0, 30}] Table[ChebyshevU[3*n, 3/2], {n, 0, 20}] (* Vaclav Kotesovec, May 27 2023 *)
-
PARI
a(n)=fibonacci(6*n+2) \\ Charles R Greathouse IV, Jun 11 2015
-
PARI
Vec((1+3*x)/(1-18*x+x^2) + O(x^100)) \\ Altug Alkan, Jan 24 2016
Formula
From R. J. Mathar, Jul 04 2011: (Start)
G.f.: ( 1+3*x ) / ( 1-18*x+x^2 ).
a(n) = ((5-3*sqrt(5)+(5+3*sqrt(5))*(9+4*sqrt(5))^(2*n)))/(10*(9+4*sqrt(5))^n). - Colin Barker, Jan 24 2016
a(n) = S(3*n, 3) = S(n,18) + 3*S(n-1,18), with the Chebyshev S polynomials (A049310), S(-1, x) = 0, and S(n, 18) = A049660(n+1). - Wolfdieter Lang, May 08 2023
Extensions
Index in definition corrected by T. D. Noe, Joerg Arndt, Apr 17 2011