A134667 Period 6: repeat [0, 1, 0, 0, 0, -1].
0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0
Offset: 0
Examples
G.f. = x - x^5 + x^7 - x^11 + x^13 - x^17 + x^19 - x^23 + x^25 - x^29 + ...
References
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1986, page 139, k=6, Chi_2(n).
- L. B. W. Jolley, Summation of Series, Dover (1961).
Links
- R. J. Mathar, Table of Dirichlet L-series.., arXiv:1008.2547 [math.NT], 2010-2015.
- Index entries for linear recurrences with constant coefficients, signature (0,-1,0,-1).
Programs
-
Magma
&cat[[0, 1, 0, 0, 0, -1]^^20]; // Wesley Ivan Hurt, Jun 20 2016
-
Maple
A134667:=n->[0, 1, 0, 0, 0, -1][(n mod 6)+1]: seq(A134667(n), n=0..100); # Wesley Ivan Hurt, Jun 20 2016
-
Mathematica
a[ n_] := JacobiSymbol[-12, n]; (* Michael Somos, Apr 24 2014 *) a[ n_] := {1, 0, 0, 0, -1, 0}[[Mod[n, 6, 1]]]; (* Michael Somos, Apr 24 2014 *) PadRight[{},120,{0,1,0,0,0,-1}] (* Harvey P. Dale, Aug 01 2021 *)
-
PARI
{a(n) = [0, 1, 0, 0, 0, -1][n%6+1]}; /* Michael Somos, Feb 10 2008 */
-
PARI
{a(n) = kronecker(-12, n)}; /* Michael Somos, Feb 10 2008 */
-
PARI
{a(n) = if( n < 0, -a(-n), if( n<1, 0, direuler(p=2, n, 1 / (1 - kronecker(-12, p) * X))[n]))}; /* Michael Somos, Aug 11 2009 */
Formula
Euler transform of length 6 sequence [0, 0, 0, -1, 0, 1]. - Michael Somos, Feb 10 2008
G.f.: x * (1 - x^4) / (1 - x^6) = x*(1+x^2) / (1 + x^2 + x^4) = x*(1+x^2) / ( (1+x+x^2)*(x^2-x+1) ).
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3)) where f(u, v, w) = w * (2 + v - u^2 - 2*v^2) - 2 * u * v. - Michael Somos, Aug 11 2009
a(n) is multiplicative with a(p^e) = 0^e if p = 2 or p = 3, a(p^e) = 1 if p == 1 (mod 6), a(p^e) = (-1)^e if p == 5 (mod 6). - Michael Somos, Aug 11 2009
a(-n) = -a(n). a(n+6) = a(n). a(2*n) = a(3*n) = 0.
sqrt(3)*a(n) = sin(Pi*n/3) + sin(2*Pi*n/3). - R. J. Mathar, Oct 08 2011
a(n) + a(n-2) + a(n-4) = 0 for n>3. - Wesley Ivan Hurt, Jun 20 2016
E.g.f.: 2*sin(sqrt(3)*x/2)*cosh(x/2)/sqrt(3). - Ilya Gutkovskiy, Jun 21 2016
Comments