A134848 Number of digits in A134847(n).
4, 5, 6, 8, 9, 10, 11, 13, 14, 14, 17, 18, 19, 21, 21, 23, 24, 26, 27
Offset: 1
Links
- J. Browkin, Groebner basis.
Extensions
a(11)-a(15) from Lars Blomberg, Jun 25 2011
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(1) = 32 because 32 is the smallest number without zero digits whose square has exactly one zero: 1024.
(*For a(7) *) mx = 0; Do[Do[Do[Do[Do[Do[Do[k = 10^6b + 10^5q + 10^4r + 10^3p + 10^2s + 10n + m; w = IntegerDigits[k^2]; ile = 0; Do[If[w[[t]] == 0, ile = ile + 1; If[ile > mx, mx = ile]], {t, 1, Length[w]}], {m, 1, 9}], {n, 1, 9}], {s, 1, 9}], {p, 1, 9}], {r, 1, 9}], {q, 1, 9}], {b, 1, 9}]; mx
a(1)=18 because we have 18 numbers with 2 digits and without zero digit whose square have maximal possible value 1 zero: 32, 33, 45, 47, 48, 49, 51, 52, 53, 55, 64, 71, 78, 84, 95, 97, 98, 99. a(2)=3 because we have 3 numbers with 3 digits and without zero digit whose square have maximal possible value 3 zeros: 448, 548, 949. a(3)=13 because we have 13 numbers with 4 digits and without zero digit whose square have maximal possible value 4 zeros: 3747, 3751, 4899, 6245, 6249, 6253, 7746, 7747, 7749, 7751, 7753, 9747, 9798. a(4)=1 because we have only one number with 5 digits and without zero digit whose square have maximal possible value 6 zeros: 62498. a(5)=7 because we have 7 numbers with 6 digits and without zero digit whose square have maximal possible value 7 zeros: 248998, 316245, 489898, 498999, 781249, 948951, 997998. a(6)=1 because we have only one number with 7 digits and without zero digit whose square have maximal possible value 10 zeros: 6244998.
(*For a(7) *) c = 0; mx = 10; Do[Do[Do[Do[Do[Do[Do[k = 10^6b + 10^5q + 10^4r + 10^3p + 10^2s + 10n + m; w = IntegerDigits[k^2]; ile = 0; Do[If[w[[t]] == 0, ile = ile + 1], {t, 1, Length[w]}]; If[ile == mx, c = c + 1], {m, 1, 9}], {n, 1, 9}], {s, 1, 9}], {p, 1, 9}], {r, 1, 9}], {q, 1, 9}], {b, 1, 9}]; c (*Artur Jasinski*)
(*For a(7)*) mx = 0; Do[Do[Do[Do[Do[Do[Do[k = 10^6b + 10^5q + 10^4r + 10^3p + 10^2s + 10n + m; w = IntegerDigits[k^2]; ile = 0; Do[If[w[[t]] == 0, ile = ile + 1; If[ile > mx, mx = ile]], {t, 1, Length[w]}], {m, 1, 9}], {n, 0, 9}], {s, 0, 9}], {p, 0, 9}], {r, 0, 9}], {q, 0, 9}], {b, 1, 9}]; mx
a(1)=18 because we have 18 numbers with 2 digits not divisible by 10 whose squares have maximal possible number of zero digits, namely 1 zero: 32, 33, 45, 47, 48, 49, 51, 52, 53, 55, 64, 71, 78, 84, 95, 97, 98, 99 a(2)=3 because we have 3 numbers with 3 digits not divisible by 10 whose square have maximal possible number of zero digits, namely 3 zeros: 448, 548, 949 a(3)=24 because we have 24 numbers with 4 digits not divisible by 10 whose square have maximal possible number of zero digits, namely 4 zeros: 1001, 1002, 1003, 2001, 2002, 3001, 3747, 3751, 4001, 4899, 5001, 5002, 5003, 6245, 6249, 6253, 7746, 7747, 7749, 7751, 7753, 9503, 9747, 9798 a(4)=11 because we have 11 numbers with 5 digits not divisible by 10 whose square have maximal possible number of zero digits, namely 6 zeros: 10001, 10002, 10003, 20001, 20002, 30001, 40001, 50001, 50002, 50003, 62498 a(5)=10 because we have 10 numbers with 6 digits not divisible by 10 whose square have maximal possible number of zero digits, namely 8 zeros: 100001, 100002, 100003, 200001, 200002, 300001, 400001, 500001, 500002, 500003 a(6)=11 because we have 11 numbers with 7 digits not divisible by 10 whose square have maximal possible number of zero digits, namely 10 zeros: 1000001, 1000002, 1000003, 2000001, 2000002, 3000001, 4000001, 5000001, 5000002, 5000003, 6244998
(* For a(6) *) a = {}; c = 0; mx = 10; Do[Do[Do[Do[Do[Do[Do[k = 10^6b + 10^5q + 10^4r + 10^3p + 10^2s + 10n + m; w = IntegerDigits[k^2]; ile = 0; Do[If[w[[t]] == 0, ile = ile + 1], {t, 1, Length[w]}]; If[ile == mx, c = c + 1; AppendTo[a, k]], {m, 1, 9}], {n, 0, 9}], {s, 0, 9}], {p, 0, 9}], {r, 0, 9}], {q, 0, 9}], {b, 1, 9}]; c
Comments